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ABSTRACT

The use of computational analysis in the design of propulsive
nozzle installations has recently expanded as advanced digital com-
puters have been developed which result in lowering computational
costs versus actual wind tunnel test costs. Although a range of
numerical techniques has been applied in this area, only those utiliz-~
ing the full Navier-Stokes equations across the flow domain have
successfully simulated the viscous phenomena associated with aft-end
flowfields. Navier-Stokes methods are particularly useful for predicting
off-design nozzle characteristics where the overexpanded or underexpanded
flowfield is more complex and where viscous regions are more prevalent
than at on-design ccuditions. One feature typical of these off-design
conditions is the appearance of a strong normal shock wave referred to
as a Mach disc. Viscous nozzle flowfields containing this phenomenon
have not been adequately simulated in the past. This research details
the development of a numerical Navier-Stokes method capable of accurately
predicting supersonic coflowing nozzle flowfields which contain both
highly viscous regions and complex shock structures typified by the Mach
disc formation.

Numerical solutions to the Navier-Stokes equations are obtained for
a domain containing an axisymmetric coflowing nozzle with a thick base

= 3.0, Re_ = 2.2x106). Five nozzle pressure

annulus (M = 1.94, M,
© jet

ratio conditions ranging from a highly overexpanded case (PJ./Pm = 0.15)
which exhibits a Mach disc shock formation, to a slightly underexpanded

case (Pj/Pm = 1.59) are examined and solved numerically. The weak con-

XV




servative form of the two-dimensional (axisymmetric), time dependent
Navier-Stokes equations is solved using MacCormack's explicit finite
difference method. This algorithm is an efficient Lax-Wendroff type
differencing scheme of second order accuracy which utilizes time-
splitting and two-step predictor-corrector techniques. An adaptive
grid scheme is utilized in the wake of the nozzle base annulus that
allows the fine mesh region of the computational grid to remain in
the mixing layer containing high flow gradients as each solution
progresses towards convergence. Appropriate numerical boundary
conditions are applied that allow the computational domain to be re-
stricted to a compact region surrounding the nozzle. Locally depend-
ent eddy viscosity modelling is applied in the form of a Cebeci-Smith
two layer model in the boundary layer regions on the nozzle walls,
and a form of the Prandtl mixing length model in the nozzle wake region.
The numerical solutions successfully reproduced all of the
essentiai nozzle flow features including boundary layers, corner
expansions, recompression shocks, the separated recirculation region
along the nozzle base wall, and the evolution of the near wake to a
far wake type of flow. Correct transition from regularly reflected
shock waves at the line of symmetry in the jet core to the strong Mach

disc shock reflection was numerically achieved, as was the simulation

of the subsonic embedded region immediately behind the Mach disc shock
structure. Numerically obtained nozzle base pressure coefficients were
within seven percent of the experimentally determined values for all

cases where the flow obeyed the assumption of remaining attached in the

' divergent portion of the convergent-divergent nozzle.

Present solution times for 2,500 point grids are on the order of

xvi
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two to four hours when run on a Cyber 750 computer. A fully vectorized
version of the present computer code can be expected to converge within
five minutes on a CRAY-1 computer for similar grids, allowing the compu-
tation of more complex nozzle geometries and better resolution in the

boundary layers through the use of a finer mesh in future efforts.
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CHAPTER 1
INTRODUCTION

1.1 BACKGROUND

The increased importance of the aft-end drag problem associated
with nozzle installations in current and future high performance air-
craft has led to extensive and very costly experimental nozzle test
programs. Any technique which can reduce this requirement for wind

tunnel testing in the design of nozzle installations will result in a

significant savings to the technical community of both time and resources.

Computational aerodynamics shows great promise as a field which
can have a favorable impact on this requirement for nozzle design
information. Current Navier-Stokes techniques in this area utilize

advanced digital computers tco simulate the flowfield surrounding the

nozzle at projected flight conditions. It has been shown that boundary

layer and shear layer growth, areas of separated flow, shock wave
formation and interactions, and jet plume blockage and entrainment
characteristic of nozzle flows can be analyzed using computational
techniques. Unlike experimental testing, computational analysis is
not necessarily restricted by wind tunnel Reynolds number or nozzle
exhaust temperature limitations. Flowfields analyzed computationally
can also eliminate the undesirable effects of support stings and test
section walls that occur during experimental testing. As more ad-
vanced computers are developed, the cost of numerical analysis
decreases. Since the cost of wind tunnel testing is steadily in-
creasing, computational analysis is being utilized more extensively.

Several of the first computational solutions to include viscous




effects inherent to aft end or nozzle flowfields consisted of patching
techniques that divided the field into predominantly inviscid and
viscous regions. Grossman and Melnik (1), and Cosner and Bower (2)
obtained transonic boattail nozzle solutions using iterative techniques
that divided the flowfield into an inviscid freestream, an inviscid
jet, and a viscous boundary layer and mixing layer region. The free-
stream solution procedure assumed irrotational potential flow that
could be solved by a relaxation algorithm applied to the potential flow
equations. The rotational inviscid supersonic jet was solved using a
hyperbolic marching technique. Imbedded shocks in the jet were ex-
plicitly fitted to satisfy the Rankine-Hugoniot equations. The'viscous
mixing region was assumed to be isobaric and was solved using integral
techniques. Each region was solved separately and patched together
iteratively using pressure and flow direction conditions at the common
boundaries. Separation regions could not be accounted for, so equiva-
lent fitted body blending was used to obtain reasonable flow solutions.
Pergament, Dash, and Wilmoth (3) introduced a displacement thickness
correction to the inviscid plume boundary to account for the effects of
jet entrainment on the inviscid external flow calculation. Their analysis
also included the effects of species mixing and pressure gradients in the
mixing region, but still could only account for separation regions by
body blending techniques. Yeager (4) attempted to include a fourth
separation region involving recirculating flow that was defined by a
dividing streamline which connected separation and reattachment points,
The extent of this region was determined using local control volume
analyses, and it was found that reasonable reattachment points could only

be predicted through the application of empirical corrections during the




solution procedure. Although these iteratively patched solutions gave
reasonable results for specific data sets, the required amount of
empirical matching and explicit fitting limits the use of this type

of computational method as a predictive technique.

A more adaptable method of simulating the viscous-inviscid inter-
actions that occur in typical nozzle flowfields involves solving the
time dependent, compressible Navier-Stokes equations uniformly over the
entire nozzle flowfield. This approach has a direct advantage over the
previously discussed iteratively patched methods where an accurate vis-
cous-inviscid matching procedure is required in order to obtain reasonable
results. 1In the direct approach, the predominantly inviscid and viscous
flow regions are computed simultaneously with no matching required.
Holst (5) used this approach to solve for supersonic flow over axisym-
metric boattail nozzles with plume simulators. Although a plume
simulator does not model the entrainment and blockage of a jet plume,
its flowfield does contain phenomena characteristic to coflowing
nozzles such as turbulent boundary layers, recompression shock waves,
and separated recirculating regions of flow. Holst's solutions were
obtained using MacCormack's explicit finite difference algorithm, a
stretched mesh aligned with the solid body through an analytic trans-
formation and a two layer eddy viscosity model to account for the
Reynold's stresses that included a relaxation formula to model the
separated flow region. Pressure distributions, skin friction co-
efficients and areas of separated flow were in good agreement with
experimental data, particularily in the cases where a fine mesh was

utilized, Mikhail (6) recently computed solutions for viscous




supersonic flow around an axisymmetric boattail nozzle with a jet
exhaust flow. MacCormack's explicit method was again used as the
numerical algorithm, together with a surface oriented mesh system
obtained through a numerical mapping procedure. Reynold's stresses
were also accounted for through the application of algebraic eddy
viscosity models. Reasonable agreement with experimental surface
pressure data on the boattail was obtained.

Navier-Stokes solutions are especially useful for predicting the
of f-design nozzle characteristics where the flowfield is in either a
significantly overexpanded or underexpanded state. At these conditions
the flow structure is usually more complex with viscous regions becoming
more prevalent than at on-design conditions. One feature typical of these
off-design conditions is the establishment of a triple~point in the jet
flow, and the appearance of a strong normal shock wave referred to as a
Mach disc in axisymmetric flow or a Riemann wave in two-dimensional flow
(Figure 1). This strong shock formation occurs when the deflection angle
of the jet flow is large enough so that the resulting shock wave is too
strong for a regular reflection at the centerline to exist. Near the
centerline the Mach disc must be normal, since this is the only way a
shock can occur without any change in flow direction. As shown in Figure
2, both the Mach disc and the reflected shock are curved near the triple
point (7). A slip line emanates from the triple point, and the flow
downstream of the Mach disc and reflected shock is rotational in nature
due to the curvature of the shocks. As discussed by Henderson and Lozzi
(8), this region downstream of the shocks may be either totally subsonic

or contain both supersonic and subsonic regions. If the incident Mach
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Figure 1. sShock Structure for a Typical Overexpanded
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nunber Ml is greater than 2.40, region 3 will be supersonic, while region
4 remains subsonic. Since the jet Mach numbers relevant to this investi-
gation are greater than 2.40, the latter case in which a subsonic core
only exists behind the Mach disc will be examined.

The transition from regular to Mach reflections can also be examined
using a hodograph diagram shown in Figure 3. For deflection angles less
than the transition angle (étr), the flow can be brought to the required
zero deflection at state 3 through a weak regular wave reflection. Tor
deflection angles greater than the transition angle, the flow in region
3 cannot achieve a zero deflection state, and lies on the strong shock
portion of the initial shock polar. The flow near the centerline passes
through a strong normal shock to condition 4' with no deflection occurr-
ing. The flow state at the curved Mach disc then exists along the strong
shock portion of the incident shock polar from a zero deflection state
4' near the centerline to a deflected state 4 near the triple point with
a pressure and flow angle equal to that in region 3, but with different
velocity and entropy values that generate the slip line.

The mixed supersonic~subsonic flow region surrounding the Mach
disc greatly complicates the anlysis of nozzle flowfields in which this
shock structure is present. Flowfields containing this phenomena have
not been adequately simnlated in the past using viscous techniques.

A variety of techniques for locating the triple point and the result-
ing normal shock have been presented that utilize an iterative combina-
tion of the method of characteristics and schemes involving approximate
analyvses such as pressure requirements downstream of the strong shock
(9,10) or one-dimensional flow calculations downstream through a throat

region in the flow (11,12). Although each of these methods give reason-
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able results for determining the triple point location and size of the
resulting Mach disc, each is only valid for a limited range of nozzle
pressure ratios and jet Mach numbers. In addition, none of these
techniques give a solution for the subsonic core region downstream

of the normal shock. At least two time dependent inviscid techniques
have been used to overcome the deficiencies of the semi-empirical methods
previously mentioned. Jofre (13) performed a finite difference technique
for an underexpanded jet with a Mach disc solution. A method of charac-
teristics solution was used in the plume expansion region near the

nozzle exit. This gave an upstream flow profile used in the time depend-
ent solution further downstream. Sinha, Zakkay, and Erdos (14) analyzed
a two-dimensional underexpanded jet containing a strong normal shock
using a finite difference technique over the entire flowfield of interest.
Both of these investigations used versions of Lax-Wendroff numerical
algorithms and simple square grids. These solutions were much more
adaptable than the previous semi-empirical techniques since the flow

tends to adjust to its local environment so that the proper shock stucture

is automatically obtained as the solution develops. However, these

solutions represent only a first approximation of the correct viscous
solution (15), particularly in the region downstream of the normal shock
as shown in Figure 4. Flow properties in this region were found to be
heavily dependent on the level of damping used in the solution algorithm.
For example, Jofre (13) found that an unrealistic region of reverse flow
was generated immediately behind the normal shock unless heavy damping
was applied in the solution procedure,.

All of these inviscid solutions involved jets exhausting into a

quiescent atmosphere. Solutions were not attempted for the more com-
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plex case of a coflowing nozzle where the external flow stream interacts
with the jet. A full Navier-Stokes solution which accounts for the viscous
effects present in the flow field at these off-design conditions is
necessary in order to adequately simulate both the strong-shock structure
with its resulting imbedded subsonic flow region as well as the inter-

action of the jet plume with the external flow field.

1.2 RESEARCH OBJECTIVES

The primary objective of this research is the development of a
numerical Navier-Stokes method capable of accurately predicting super-
sonic coflowing nozzle flowfields which contain both highly viscous
regions and complex shock structure typified by the Mach disc shock
formation. Overexpanded axisymmetric nozzles will primarily be simu-
lated, since they meet the previous criteria while possessing fairly
compact flow domains which contain the flow phenomena of interest. The
experimental data of Bromm and O'Donnell (16) has been chosen as a basis
for comparison in this research effort. Data in this reference is given
for an axisymmetric Mach three isentropic nozzle embedded in a turbulent
Mach 1.94 external flowfield as shown in Figure 5. Nozzle pressure
ratios ranging from a slightly underexpanded condition to a highly
overexpanded condition which exhibits the Mach disc structure were
obtained experimentally. This particular nozzle possesses a relatively
thick base annulus which generates a strong viscous-inviscid interaction
in the near wake region of the nozzle. These interactions affect the
development of the primarily inviscid shock structure, and can only be

analyzed properly using a full Navier-Stokes methodology.

11
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Although Mikhail achieved full Navier-Stokes solutions for an
axisymmetric coflowing nozzle, he was not able to generate an accurate
solution for the condition at which a Mach disc shock structure was
shown to exist expe-imentally (6). Possible causes of this inability
to generate the strong shock structure include boundary condition
formulation, mesh spacing and turbulence modeling. These three areas
will be concentrated on in the present investigation in order to achieve
the desired goal of an accurate predictive technique for both on-design

and off-design nozzle performance.
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CHAPTER 11

MATHEMATICAL DESCRIPTION OF THE FLOW STRUCTURE

2.1 GOVERNING EQUATIONS

The governing equations for flows containing the shock and vis-
cous phenomena of interest are the conservation equations for mass,

momentum, and energy known as the Navier-Stokes equations. The gases

involved are assumed to be single component, have constant specific

heats, and obey the perfect gas equation of state:

P = pRT (2-1)

In computational fluid dynamics, the Eulerian method is usually

applied to the problem of interest. This method involves a fixed con-

trol volume that is specified relative to a given coordinate system.

Properties of the fluid are then specified as functions of both time

and space. The conservation equations are approached using this method-

ology.

COXSERVATIOX OF MASS

For a given system in which matter is neither created or destroyed,

the law of mass conservation can be written as
Hf(—f’—i— + V . pJ) dv = 0 (2-2)
d Jt
\
where V is an arhitrary volume fixed in space.

CONSERVATION OF MOMENTUM
For a given system, the law of momentum conservation states that

the rate of change of momentum is equal to the sum of the external forces

14




e —— T 2

acting on the control volume. If body forces uire neglected, this law

can be written as:

fff{iﬁ”ﬁ + 7 - (o0) 0] AV =_[Jf(v . 5) av (2-3)
7 ot

The variable S denotes a stress tensor involving pressure and viscous

forces which acts on the fluid.

CONSERVATION OF ENERGY

The law of conservation of energy states that for a given system
which does not contain any internal heat soutrces, the rate of change
of the total energy of the system is equal to the heat added into the

system plus the work done on the system by viscous and pressure forces.

This can be stated as
fjj{‘—(‘ﬁ) +9 -+ (pe) ul Qv = fjj(v-ﬁ-§ - V) av (2-4)
{ ot 7

Since these conservation equations are valid for any arbitrary

volume V; when the integrands are continuous, these equations imply that:

. -
ar/st + 9V« pu=0

(2-5)
sGu)/it + 7+ (cu) U -9V -85 =0 (2-6)
5(ve)/st + ¥ + (re) u + (Ved = Veu:S) = 0 (2-7)

It should be noted that these equations are written in conserva-

tive form where, for the two-dimensional and axisymmetric flows of
interest, the applicable dependent variables are p, pu, pv, and pe. As
shown by Roache (17), this conservative form allows the finite difference
equations to preserve the Gauss divergence property of the continuum

equations. This form allows a balance between the flux quantities and

15




accumulation rates for a small control volume. Roache also states that
the Rankine-Hugoniot shock relations were derived using the conservative
form. Thus, shock jump conditions are automatically satisfied since the
conservative variables are continuous across the shock and need no special
treatment because of discontinities. This approach is known as shock
capturing or shock smearing. The conservatiocn form of the equations then
allows the finite difference formulation to satisfy the physical laws on

a macroscopic scale, not merely in some academic limit as &x, Ay, and 4t
approach zero.

Since the flowfields of interest are turbulent, the solution of the
conservation equations must take into account the effects of the random
fluctuations of the dependent variables inherent to turbulent flows. 1In
accounting for these effects, cartesian tensor notation will be applied.
The usual conventions of a repeated subscript indicating summation over
the entire range of indices and a comma representing partial differentia-
tion will be used to make the equations compact. Cartesian tensors are
used to allow working directly with the physical components, while still
being applicable to the 2-D and axisymmetric systems of interest. The

conservation equations (2-5) through (2-7) can then be written as:

‘ + (pu,),, = 2-
e (Puj),J 0 (2-8)
i + (¢ . ¢ - 1,0, = 2-Q
( Ui)’t (LuiuJ + i P le) 5 0 ( )
+ J + X - 1 . . = 2— \
((e),t ((euj qj uy liJ),J 0 (2-10°
where the stress tensor Sij has been expanded in the form:
- = - H + 1 o
Sij P 1 ‘ (2-11)

The dependent variables in the conservation equations can be ex-

panded into the following form:




u=u-+u' 2-12a)
v=v+v' (2-12b)
P="%+7p (2-12¢)
o= +op' (2-124)
e=¢e+e' (2-12e)

In these expansions the barred variables represent time averaging over
a time interval that is long compared to turbulent eddy fluctuations,
yvet small compared to macroscopic flow changes. The primed variables
then represent fluctuations due to the turbulent nature of the flow.
As discussed by Chapman (18), this time averaging approach is valid
since the frequencies of most unsteady flows of interest are a factor
of 10 to 100 below the mean frequency of turbulent eddies.

If the dependent variables u, v, and e are mass averaged as
described in reference (19), and p and P are mean (time averaged) state
variables, then the conservation equations can be written in the form of

mean flow equations as:

S, + (pu),. =0 (2-13
t DUJ) i )
gt Ton Bs . - (.. - pu'u - -
(‘Ui),t + [(‘Uiuj) + P‘ij (Tij puiuj)],j 0 (2-14)
- o T Tale!' _ o - PR O | = _
(re),t + [ceuj + qj + puje uy (Tij puiuj)],j 0 (2-15)

where a higher order mean energy dissipation term in ui has been neglected
in the energy equation (2-15).

The term [:EZE;EE is known as the Reynolds stress. It represents
a momentum transfer caused by turbulent fluctuations present in the flow-

field. This Reynolds stress term can be written as an apparent stress

caused by the turbulent nature of the flow:

17




T - _
ij'turb "M (2-16)

Since air is essentially an isotropic fluid, the mean stress term can

be expanded into its normal and shear stress components as:

= ju + & + u. .
17 MYk Sag v gy ey

1 =

(2-17)

The turbulent stress term can then be written in analogous form as:

8 + ¢ (u,

o Yok Cij i,j 745,10 (2-18)

"ijlturb
where Xt and ¢ are the turbulent viscosity coefficients of the flow.
The coefficient ¢ is known as the eddy viscosity, and is analogous to
the molecular viscosity coefficient 1. However, € is more a property of
the dyvnamics of the flow, whereas . is onlyv a property of the fluid.

Combining the mean and turtulent stress terms, an overall stress tern

can be written as:

= (W ) u ) + u a -
Tijleorar T O My Syt e Qg g ) (219

In the energy equation an additional unsteady term appears. This
term is by nature an apparent heat flux caused by the fluctuations in-

herent to turbulent flow and can be written as:

= wu'e! 2.
3 lturb Cuje (2-20)

Falry)

If the heat flux term éj is defined by the Fourier heat equation

as:
1. = -kT,. = - (C_u/Pr) T,. (2-21)
i J P '3
then by the former analogy qj turb can be written as:
. _ - o
qjlturb (Cpe/Pr ) T,j (2-22)
where again ¢ is the eddy viscosity coefficient, and I’rt is the turbulent

Prandtl number of the flow. Combining these two heat fluxes, a total

18




heat flux can be written as:

= 1 + T 2~
% total p (v/Pr e/Prt) T,j (2-23)

The mean conservation equations can then be written in the follow-
ing form, where the overbars on the terms are dropped for convenience,

and where the values of the shear stresses and heat fluxes are the total

values:
oy + (‘,uj),j =0 (2-24)
(:ui),t + [(cui)uj + Pﬁij - Tij]’j =0 (2-25)
(le),t + 1 (e) uj + éj -y Tij]’j =0 (2-26)

Since the flowfields of interest are either two-dimensional or
axisymmetric in nature, the mean conservation equations can be written

in the following compact vector form:

ey 3 s(pdo
EISPE] AR S i) R . (2-27)
at R rjo ar rJo

where j. = 0 or 1 for either the two dimensional or axisymmetric cases,

respectively, and

; T cu,
‘ b’ -

ro= vy ; r=| Ixx

Vi cuv - T

o Xr ;

e cue + g - uo__ - VT (2-28)

X XX Xr

TEV 1 0
S A -
G (vz Fxr . H = ?"

rr “H
nrve + g - ut - Vo 0
r Xr rr
where

= =P 4+ (43 ) div V + 2(. + )—I"u (2-2

Txx = ‘e iv <A A A% 2-29)
ad 9\'7
ol = =P + (42 ) div V 4+ 2(G: + ¢) = (2-30)
rr t ar
19




= P+ () div V42 (u+ ) % (2-31)

L= G+ (e (2-32)
Xr or 9%
¥ € aT
_ R N 2.
Ay LP (Pr Prt) X (2-33)
- _ o, ey ol e
4 = Cp Pr = Pr ) (2-34)
and
AL SL A 4 o
div V ~ + v + jo . (2-35)

The coefficient of viscosity p for air can be assumed to var:
according to Sutherland's law {19):

b= (2,27 + 10791 5/(T + 198.6) (1bf - sec/fe) (2-36)

The second coefficient of viscosity is assumed as the following

by applying Stokes Hypothesis:
O+ At) = =2/3 (b + &) (2-37)

The governing equations for the problem of interest now consist
of the four conservation equations in matrix form (eq. 2-27) with four
unknown dependent variables p, pu, pv and pe. The perfect gas law is
used to define the pressure in terms of these conservative variables,
and a model of the dependence of the eddy viscosity on the mean flow must
be introduced to overcome the "turbulent closure' problem inherent in the
turbulent mean conservation equations.

For numerical computation in a transformed (/,n) cartesian plane, the

matrix form of the conservation equations (2-27) can be written as:

e . (pdo
SR :—I 1 —f(————~';_ 9,
J RN rjo r ds,
F 1 “(r3°6) H
b, By MO,k (2-38)
X dn jo T an Je
T T
where 7 and 1 are now the independent variables, and the transformation
20
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derivatives FX, S N and n are obtained numerically from a mapping
procedure. Equation (2-38) 1is actually in weak conservation form due 1

to the varving coefficients in front of the derivatives, and also due

to the source term in the axisymmetric case.

2.2 BOUNDARY AND INITIAL CONDITIONS q
Boundary and initial conditions must be given in order to solve

the conservation equations which govern the flowfield. These conditions

must be carefully specified, since many flow features such as shock waves,

boundary lavers, and recirculation areas arise from boundary conditions.

For the solution of a symmetric two-dimensional or axisymmetric supersonic

jet embedded in a supersonic external flowfield, the domain of interest

can be defined as shown in Figure 6. Only one-half of the total nozzle

flowfield needs to be considered due to the axis of symmetry on the jet
centerline. The remainder of this chapter will detail the specific bound-

ary conditions that are pertinent to this problem.

THE I'PSTREAN BOUNDARY

Inflow conditions on the upstream jet bhoundary (AB) and the up-
stream external boundary in the freestream (CD) are completelv specified.
Velocity, pressure, and temperature profiles determined from auxiliary
computations or known experimentally on this boundary fix p, ru, pv,

and e for the duration of the problem solution at the boundarv.

THE UPPER BOUNDARY
The upper boundary (DE) must accurately represent a free flight
condition where mass flow is alloweu across this boundary embedded in

the supersonic external flowfield. Weak shock waves and Prandtl-lMever

21
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expansion waves must also exit this boundary without being reflected
artificially back into the domain of interest. One conditio: that
allows this is the assumption of a simple wave solution:

Ll =0 (2-39)

A
’ I1'DE

where )I is the straight left running characteristic line passing through
each point on the upper boundary. This characteristic line is determined
only by the value of the Mach number and flow angle of the supersonic
flow present near the upper boundary. This condition assumes that the

flow along this boundary is inviscid and homentropic.

THE DOWNSTREAM BOUNDARY

The downstream boundary (EF) is unique in that no rigorous assumptions
can be made about either the variables or their gradients unless the bound-
ary is placed a great distance downstream. In this case a no change
condition

af
35X |EF

=0 (2-40)
could be assumed, where f denotes the primitive variables ¢, u, v, and
T. For the case where the downstream boundary is placed where gradients
do exist, an extrapolation method based on this fact can be reasonably
applied. One such method is to assume that a flow gradient accurate to
second order can exist. This can be implemented as:

3

D] 2o (2-41)
Jx - 'EF

In other words, gradients can occur which are parabolic with respect
to x. This condition is reasonable if the gradients at this boundary

are not severe as in the case where a strong shock wave exits the boundarv.
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THE CENTLRLINE
The centerline boundary (AF) is a line of symmetry with no mass

or eneryy flux across it. Therefore, the following boundary conditions

can be applied

t

= - 7
V‘AF 0 (2-42)
o 2-
;r!AF 0 (2-43)
"u \ /
'TE!AF =0 (2-44)

Since the v component of velocity is zero on the centerline, this
boundary is also a streamline in the jet flow. For steady, adiabatic flow
with negligible volume forces, the total enthalpy along any streamline
is a constant. Therefore, along the centerline,

| 2

U.~
lo = T + — = =/
1 (CP 2) ,AF constant (2 45)

Since the condition at the jet exit is specified, the centerline boundary

can be properly posed using this approach.

NOZZLE WALLS

The nozzle walls (BG, GH, and CH) are considered to be no-slip,
impermeable boundaries. This assumption gives the conditions that:
! = 2-4
Uleany 7 O (2-462)
and

1

Vieall = 0 (2-46h)

Since the stainless steel nozzle consists of thin-walled material
with a thermal conductivity much greater than that of the surrounding

fluid, the nozzle walls are assumed to be at a constant temperature:
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T’wall = constant (2-47)

This wall temperature is determined by applving a heat flux bal-
ance across the jet and freestream boundary layers as outlined in
Appendix A.

The pressure on each nozzle wall is unknown, but can be approxi-
mated by applving the degenerate form of the appropriate normal

momentum equation at each nozzle surface to obtain the following:

a1
P sn

= = =t = 2 _
snlwall 3S 0 (2-48)

wall
In this expression n is the direction normal to the wall surface, and

s is the direction parallel to the surface.

INITIAL CONDITIONS

Since the governing equations contain time dependent terms, initial

conditions must be specified before the solution process can begin. The

specification of these initial conditions is somewhat arbritrary in nature,

althougn steep gradients must be avoided to prevent numerical divergence
during the solution process. Since the flow is predominantly supersonic
in nature, the incoming flow profiles will have a dominant effect on the
solution in the whole computational domain. The incoming flow conditions
are imposed on the complete domain as discussed in the section on initial

condition implementation of chapter 5.
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, CHAPTER 111

NUMERICAL PROCEDURE

The nunerical procedurs consists of solving the governing equa-
tions with applicable boundary and initial conditions through the use
of appropriate finite difference techniques on a high-speed computer.
This procedure can be broken down into several elements which include
the finite difference coordinate svstem, the solution algorithm, and
the convergence criteria used in the computational solution. Each of

these areas will be discussed in this chapter.

N 3.1 COORDINATE SYSTEM

Domain of Computation

The physical domain of computation consists of a rectangular area

defined by orthogonal coordinates (x,r) as shown in Figure 7. The mesh
consists of Il points on the x axis and JL points on tne r axis, where
11. and JL are dependent on the extent of the physical domain required 1or

the particular jet plume case of interest.

In order to obtain an accurate numerical solution of a viscous flow-
field, the mesh spacing must be much finer in areas containing relatively
high gradients of the variable properties such as velocity, density, and
temperature. In the coflowing nozzle these high gradient areas include
the boundary iayers on the nozzle walls and the shear laver in the wake of
the nozzle annulus. This stretching is accomplished through the use of a

patched exponential stretching scheme of the following form:
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cn(3j)
-1
1 (e-vl,———l for j = 1,x (3-1)
"= 1)

r(j) = 1L

where Lm and 1 are defined as shown in Figure &. The constant C is
determined by the minimum spacing Armin desired for the mesh next to
the wall boundarv. Applying the desired Armjn to equation (3-1) gives

Armin C
*~1 = (e - 1)) (3-2)
m

The value of C is then obtained through the use of an iterative

€= Lo +
; Lnge (1

T b

Aitken extrapolation technique.

This mesh stretching procedure is applied in the radial direction
on both sides of the nozzle wall where boundary layers are present. It
is also applied in th: axial direction at the end of the nozzle where
the jet flow begins to expand or contract and where the near wak: Aue

to the nozzle annulus begins to form.

Adaptive Mesh

It is desireable that the fine mech remain in the areas of rela-
tivelvy high velocity and temperature gradients as the solution progresses
towards convergence. This is not a problem in the case of boundary
lavers that are adjacent to a fixed wall, but is a concern in the free
shear laver area generated by the nozzle wake and the interaction between
the jet and freestream flows. This shear region on the jet plume bhoundary
will deflect to a degree that is primarily dependent on the nozzle pressure
ratic. The fine mesh region should therefore also be adapted to conform
to the general nosition of the shear region.

Hirt (21> has used a technique in the soiu*ion of free surface flows
that allows the grid to adapt as the solution progresses. he following

kinematic equation is applied in the region where the shear layer is present.
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9r  _ ar
-5—{ = CA (V - u ax) (3—3)

This equation insures the condition that as the solution converges,
the physical slope of the constant n finite difference cell boundaries
is the same as that of the velocity vectors near each cell. When
applied in a finite difference format, the grid can then adapt to the
placement of the shear layer as shown in Figure 9. Details of this

process are explained in Appendix B.

Coordinate Transformation

The physical domain as typically shown in Figure 9 is mapped to a
unit square in the computational plane shown in Figure 10. The con-
stant n lines are aligned parallel to the centerline and the constant
£ lines are in the direction normal to the centerline. The numerical
algorithm operates on this coordinate system using the transformed
conservation equations (2-32). Care must be taken in generating the
physical mesh so that smoothness of the transformation coefficients

(£, &

. Ny and nr) is retained in order to reduce numerical errors

caused by the mesh configuration.

3.2 SOLUTION ALGORITHM

MacCormack's Method

The weak conservative form of the two-dimensional, time-dependent
Navier-Stokes Equations (eqn. 2-38) is solved using MacCormack's ex-
plicit finite difference method (22). This algorithm is an efficient
Lax-Wendroff gype differencing scheme of second order accuracy which

utilizes time-splitting and two step predictor-corrector techniques.
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MacCormack's algorithm was chosen for application to the nozzle problem
because of its previous success in computing inviscid-viscous interact-
ing flows, its stability in supersonic flow, and its computational
efficiency achieved by time-splitting the finite difference operators.

The computational solution is advanced in time by applying the
numerical operator to the solution of the flowfield at time t. This
can be written as:

U, n, t+ At) = L{At) » U(L, n, t) (3-4)
where L{'t) is the two-dimensional numerical operator representing
MacCormack's algorithm acting on the transformed conservation equa-
tions. Through the use of a time-splitting technique, this twc-
dimensional operator L(t) is separated into two one-dimensional sweep
operators in the ¢ and n directions. The operator LS(At) denotes

the solution of the equation:

v Jo
L A AL O R
't X T'] ° r RIS

0 (3-5)

in the 7 direction by time increment Lt seconds. Similarly, the

operater L (Ct) represents the solution of

5o “(rle6)

- B
't oo Je r ar

e

(3-6)

o

in the n direction by a time increment £t seconds. The dependent

variabhle vector U(’,r,t) can then be advanced in time as

M/2 M/2

Ve, oy t+ ) = [ (:L/H)-Ln(ﬂt)'L{ (Lt /M))ev(g, n, t) (3-7)

with
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or as
Ui, n, t + At) = [I,”N/z(“.t/r\')-L&(At)-LrlN/z([.t/):)]-L‘ (¢, n, t) (3-8)
with

Lt = atn if atn fﬁtg
In these equations M and N are the smallest even integers of the quotients
(Athliti) and (Lti/ﬁtn), respectively, and Ati and Atn are the maximum
allowable time steps in the f and n directions as determined by the
Courant-Friedrichs-Lewy (CFL) limit discussed in the next section on
stability. The values of M and N are usually equal to two for the grid
disiribution used in the solution of the nozzle problem. This sets up
a truly alternating direction procedure that is desirable when gradients
exist in more than one direction.

The finite difference forms of the sweep operators consist of a
predictor-corrector proceduvre which increases the accuracy of the time-
dependent term evaluations. This method utilizes one-sided differencing
in the direction of sweep, but central differencing in the direction
perpendicular to the sweeping coordinate. At the completion of the
predictor-corrector process, this method is equivalent to a second order
central differencing scheme in two dimensions.

The L{(At) sweep operator represents the following numerical pro-

cedure. A predicted intermediate value is computed by the expression:

n+'. n

Lt n n
e o L -
\1)_] ‘l)_] 4L [(Ex)ly.] (Fl’.] Fl-lrJ
N jo n jo n
+ N (! ) . (r- . 1, R . G . 3"9
FAETE 2 ES TN A Ph i-1,3 1—1,3)] (3-9)

1,j
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n . . a+l i )
where Li . is the known value at time t, and Li . 1s the intermediate
R b

predictor value. The actual computed value at time (t+Lt) is then

calculated by applying the following corrector algorithm:

n+l A n+’ Lt n+'s n+’;
, I B o . o
Cay TNy G TGy Py Ry
.
1 j n+'; J r+', \ -
+—— (£, . (%, .G, 7 . -1.°. G, DI} 3-10
e ‘r)l,J ( i+1,j i+l,j i,] 1,3)] . ( )
1,]

In this £ sweep predictor-corrector algorithm, the matrices F and

G are functions of the following difference quotients:

Fm _ oM m _ Um
I B AT T L E
1,] 1,] 1,] bE 24N

(3-11)

This scheme can be depicted graphically as shown in Fig. 11.
The Lr(At) numerical sweep operator is formulated in a similar
1

manner. The intermediate predictor value is given by the expression:

n+’ n At n n
v =T - (= - T
Vi T Ty T @ gy Byt e g0)
) ) . . . jo Ot H’i‘ .
+ — (n). (e, 6t -rde. 6T, D1+ ——2d (3212
e r'i,j 1,3 "1i,] i,j-1 "i,j-1 o
i,]
The corrector value at time (t+2t) is then given by:
n+1 n n+', At n+’, n+';
.o, = 2 U, . N e I . .. - ;
n+’;
i, ot H, ?
1 . +v" 'o _*_[Y Jo : £l i
+ o= ()., (el et e 6T+ ————22d Y (3-13)
e vt i 5L T, 54 i,j 71,3 e {
i,] )

The matrices F and G are now functions of the following difference

quotients:

m _ ,m m vm
- mos ™ i+1. 7 i-1,3 i, 41 T i,
PR G~ PR (L . ———»._;___.—_—-_’.J. ______)_J‘_ i 1
laJ’ i,] A i,j 2[}{ ’ A ) (3 14)
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Plenre 11, Graphical Representation of the Numerical
sweep Operators,
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This scheme is also depicted graphically in Figure 11.

The MacCormack algorithm satisfies the requirements of stabhility,
consistency, and accuracy if the following conditions are met: It is
“table if the time step limit satisfies the CFL stability condition given
in the next section. Tt is consistent if the sum of the time steps for
each of the sweep operators is equal, and the algorithm is second order

accurate if the sequence of swecp operators is symmetric.

STABTLITY CONDITION

Although the stability of the finite difference equations cannot

e analvzed when applied to the complete set of Navier-Stokes equations,

MacCermack and Baldwin (23) have shown that considerable insight can

be geined by separately analyzing the inviscid, diffusion, and mixed

derivative parts of these equations. Stability criteria are determined

by calculating the eigenvalues of the associated amplification matrix

for each part. 1If this eigenvalue procedure is applied to the inviscid

terms of the Navier-Stokes equations for flow in a Cartesian coordinate

systen, the following stability conditions emerge:

Atx —~ T;ﬁ>+ c

and
T Lr
“r — vl +c

(3-15)

(3-16)

where ¢ is the local speed of sound. Consideration of only the diffu-

D 0 il 2]
sive terms which contain 7U/.x” and «"U/ur” in the complete Navier-

Stokes vrnuations gives the conditions:

(3-17)




and
2
At 1/2 .{45‘)_____;“ (3-18)
o e ter?

Finally, analvsis of the mixed derivative terms found in the Navier-

Stokes equations gives the condition:

A (3-19)
LIsCeo) Gt o

For the finite difference equations applied to the complete set of

Navier-Stokes equations, the stability criteria can then be estimated as:

At minimum (Lto, At) (3-20)
- .. X r
1,]
where
Ax
Sty 1 ; 3 1 '
! 4+ B = N S O WE) ; <3 -2
lul + ¢ i Gy + Prt) +oo | (/+,t)(y + )] (3-21)
and
! t . e v — L’\r
e — 1 . 2y ,u 3 1 "
+- 2= S -G ) (p -22
i +cd =Ty Gt prt) o COR O+ e)] ! (3-22)

For the present non-Cartesian jet flow cases that were computed,

the maximum time step was calculated as:

sto= minimum (Lt Atr) (3-23)
i, ‘
where
LS,
S, = e e e = —_— 7
C I, 2y o, £ IR P i ENEIRE _
u.| + ¢ + Sl s (Pr * 7 )+ S [ (A+‘t)(u + )] (3-24)
t n
and
’5
I . Tl e
to= T 1 2 i I 1 !
no TR TR S G S (=0 ) (Gl 4 - -2
v L d ; ﬂS, (Pr Prt) + 1S {-( 't)(' £)] (3-25)
i n
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where
, 2 2. )
< = + . . . ) -2
e Mgy i) Oy 7 vy ) 3-26)
85 = [ )2+ 2y (3-27
O = X r . s -
n 1,] 17_]_1 1,] 1’.]—1 ] 3 )
= M i murn -2
ué Maximumn (ui,j’ Vi’J, Ui—l,j’ Vi—l,j) (3-28)
= M i -2
u, Maximum (Ui,j’ VL,j’ ui,j—l’ vi,j-l) (3-29)

The actual time step used in the numerical procedure was less than
this estimated maximum. Factors varying between 0.35 and 0.80 were used
during the computations. Flow solutions involving relatively large viscous
wakes containing recirculation regions required much smaller allowable time-

steps with CFL factors on the order of 0.35-0.40.

NMUMERTCAL DAMPING

Strong shocks imbedded in a flowficld being solved computationally
can often cause numerical oscillations (17) which may lead to program
failure due to phvsically unrealistic values of computed pressure,
densitv or temperature. These oscillations are caused by numerical
truncation errors and can be teduced by refining the grid in the areas
of shock locations. However, this can be impractical when the oscilla-
tions are of a transient nature caused by computational start-up or
re-start procedures, or where the shock location varies for different
experimental cases and mesh refinement for each individual case is
undesireable. In this situation, a fourth order pressure-gradient
damping concepk as introdur wcCormack and Baldwin (23) can be
applied to increase the stability of the numerical algorithm.

This danping scheme is applied in both the £ and n directicnal
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sweeps. In the . numerical sweep, damping is implemented by replacing

. o + . : .
Fii,j bv (Iii,j FD,, .) and Gii,j by (Gii,j + GD., ') in equation
ii,] 11,]

(3-5). The predictor and corrector steps in this case are represented

bv i1 = i and ii = i+l, respectively. The damping terms F_ and GD are

D

in the following form:

- +
LN RPN &5 U5 B O B £ 0
! X e Cos "
i1, £, ii,] Sii,g (Pi+1,j ZPi,j + Pi-l,j)
v - U -
( i+1,3 i,j) (3-30)
and
-2
) , Pis, 417 #Fiiy5 F Fii 50
¢ = o Gvyg sl * ey 9 @ + 2p + P ‘
ii,] ‘ +3 M54 T a5 T i, -1
Jo
! . - U . R SR -31
Cii, 541 ™ Yig,5-0) 7 TiiLg (3-31)
In the n sweep, a similar procedure is implemented by replacing Fi ij
I
by (F, .. + F ) and G, .. by (G, .., + G ) where
1,33 D543 1,33 1,33 Di’jj
P. .. - 2P, .. + P. .
F = (! l+c. ) é i+1,3] i,3] 1‘1>JJJ
D. .. 2 1,33 i,33 P. .., + 2P, .. + P, . .
1,33 1 1] i+1,3] 1,33 i-1,3]
« (U - U =32
Ciar,s5 7 Vi3 (33
and
G =u (v I+ ¢ ]Pi,j+l — 2Pi’j ” Pi’j_ll
iy 0 B33 1,337 By gy + 2Py 5+ Py )
U, .- v. ) oo (3-33)
i,j+1 1,3) 1,33
In this case the predictor and corrector steps are represented by
ji =3 and jj = j+1, respectively. TFor both sweeps a, and a  are
damping constants where normally
] = = 0.5 (3'34)
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This damping technique produces fourth order viscosity like terms

of the form

C 2
JRDTE IENI (IS s I CIRVRNS 5 S NI s
3 BT B N 1 n an 4P 2| 9n
LIS an
which are added to the difference equations. The magnicude of these
damping terms is proportional to the second derivative of pressure and

is significant only in regions of pressure oscillation where the

truncation error is already. adversely affecting the solution.

3.3 CONVERGENCE CRITERIA

Convergence, as applied in this section, refers to iteration con-
vergence as opposed to truncation convergence, which involves the
convergence of the solution of the FDE to the solution of the PDE as
ix, Ar, and At > 0. Iteration convergence refers to the arrival at a
solution to the discretized Navier-Stokes equations within some accept~
able tolerance through the use of an iterative process. As stated
by Roache (17), there are no definitive criteria for iteration con-
vergence. A somewhat subjective judgement of convergence must be made
based upon an examination of the iterative behavior of the solution
flow variables. Different flow variables, as well as variables at
different locations, converge at different rates. If the slowest
converging variable in the flow-field is known, it should be the most
closely examined for convergence.

In the present case for a coflowing supersonic nozzle with a re-
latively thick base annulus, an examination of the flow variables

revealed that the slowest converging variable was the base pressure

of the nozzle annulus. The location of this base pressure is within
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the subsonic flow area involving recirculation in the wake of the nozzle
annulus as shown in figure 12. The flow variables in this subsonic
region converged much more slowly than did those in the predominantly
supersonic jet and freestream flows.

Since the coflowing nozzle problem primarily involves high
Reynolds number flow, the advective terms in the conservation equa-
tions dominate the viscous diffusion terms. A characteristic time for

a disturbance to cross the flowfield may then be characterized by:

T =

ch

L (3-35)
u

ch

where L is the length of the flowfield in the direction parallel to

the characteristic velocity u For the jet problem u was repre-

ch’ ch

sented by u_. Since in general the magnitude of u_ was less than u,

jet’

this gave a more conservative estimate of the characteristic time.

The convergence criteria was then established by the following
procedure. The numerical solution was either initially started, or
restarted from a previous case. As the solution converged, the base
pressure was monitored until its magnitude varied less than + 1% for
one characteristic time period. At the end of this characteristic time
period the solution was stopped as convergence was achieved. Visual
comparison of Mach Number and density profiles over the flowfield con-
firmed the convergence of the solution using this procedure. A sample

base pressure convergence plot is shown in figure 13,
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CHAPTER 1V

BOUNDARY AND INITIAL CONDITION IMPLEMENTATION

As in chapter two, boundary and initial conditions must be
defined in order to solve the conservation equations which govern
the flowfield. Values of the dependent variables for points on
the boundaries of the computational domain must be specified in
order for the numerical operators to solve the flowfield correctly.
This section presents the numerical formulation of the boundary and
initial conditions used for the solution of the coflowing nozzle.
The conditions were presented in a mathematical context in chapter

two.

4.1 THE UPSTREAM BOUNDARY

The flow properties on the upstream boundary (AB and CD of
Figure 6) are held fixed for the duration of the computational
solution. The values of these properties were derived in the
following manner. In the external flowfield, a parabolized Navier-
Stokes solution (24) was computed for the ogive body used in the
experimental coflowing nozzle tests as shown in Figure 14. This
solution determined that the pressure gradient at the inflow bound-
ary in the external flow stream in negligible, and that the static
pressure at the inflow boundary is 99% of that in the undisturbed
flow in the wind tunnel. The static pressure along the ogive body
surface shown ?n Figure 15 was then used as an input to a two-
dimensional turbulent boundary layer code (25, 26) along with the

other specified freestream conditions (Moo Tom’ Re , Tw) to produce
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Figure 15. Computed Static Pressure Variation along the Ogive
Body using a Parabolized Navier-Stokes Solver (23).
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input velocity component and temperature profiles at the upstream
boundary. The conservative variables on this boundary (CD) are then
calculated using these profiles and the static pressure along the
boundary. Flow variables on the upstream boundary in the jet flow
(AR) are determined in a similar manner. The same boundary layer
code is applied using the jet exit conditions and the length from

the noszle throat to the nozzle exit plane as the boundary layer
starting length. Again, profiles for the velocity components and
tenmperdture are obtained along the boundary. Values for the conser-
vative variahles are then computed using these profiles and the value
of the pressure at the jet exit. Since the value of the vertical
velocityv component is zero on the centerline boundary, a polynomial
fit is used to set the vertical velocity profile from the edge of the

boundary laver to the centerline.

4.2 THE UPPER POUNDARY

The upper boundary, labeled DE on Figure 6, utilizes the simple
wave procedure outlined by Roache (17, pp 282-283). This procedure
assumes that properties are constant along a straight, left-running
characteristic line passing through each point on the upper boundary.
The position of this line running through a boundary point (i,JL) is
determined by the angle (pM + (), where

= arcsin (I/Mi j) 4-1)

M ,

is the local Mach angle for supersonic flow, and

= arctan (v/u) (4-2)

is the local fiow direction. The properties on this characteristic
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line are determined by lincar interpolation iuvolving the properties
at points (i-1, JL), (i-1, Jl.-1), and (i, JL-1) as shown in Figure
16. Points (i-1, JL-1) and (i, JL-1) are points interior to the
computational domain, and point (i-1, JL) is either a point on the
inflow boundary (i = 1) or a previous!y defined point on the upper
boundary resulting from the left to right sweep along the boundary
using this technique.

As shown in Figure 16, one of two possible interpolation schemes
is applied depending on the local values of the quantities (”M + )

and (/r/’x). For the casc of tar (u, + 1) ‘r/2x, the
M

i-1, JL-1

position of the characteristic line lies between the points (i-1, JL-1)
and (i, JI-1). The properties at the point p, and thus at point

(i, JL), can then be determined by:

9
= = f + -
ORI A R PR Bt S B v RS U SN Bl PU N

) (4-3)

The value of i, and thus the position of the point p, can be deter-
mined by the following procedure. 1If the quantity w is defined by:

w = tan {90° - (i, + )] (4-4)

then bv geometrv:

w o= (Ix - i)/ir (4-5)
p

If the interpclation procedure of equation (4-3) is applied, then

- 9 N - i /, -_—
VoS Winaer T OGR) M e T Yia e (4-6)

Equating (4-5) to (4-6) and solving for : gives:

(rx/axr) - Yi-1,0L-1

Y/rx + (/)

= [ S

(5 gL-1 ~ Yio1,gn-1

5
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- o > cas an (i + ), < (or/ix :
For the alternate case of tan ( n )1—1,JL—1 (fr/t¥) the

position of the characteristic line lies between the points (i-1,
JIL-1) and (i-1, JL). The properties at p arc then determined by the

equation:

f - f - ) (4-8)

. + (/L) (F,
poan T E TRy gy T O/

1,JL fi—l,JL—l

In this case, the quantity w is defined as

w = tan (5. + ) . (4-9)
n
and by geometry
w_oo= ('r - 1)/ix (4-10)
p
The interpolation scheme for wp now gives the cxpression:
e T Miorgner PO Gy T vy ey (4-11)
Again, equating (4-10) to (4-11) and solving for » gives:
(tr/ix) - w,
_ e 1_—.71,;111—] (4_12)

Y/or + (1/:x)

(wi—l,JL T Yis1,01-1

Applyving the computed values of the interpolation length to the
respective interpolation equation (either (4-3) or (4-8)) gives the
proper value of the desired flow variable at the boundary point (i,

JL).

4.3 THE DOWISTREAM BOUNDARY

The downstrean boundary (EF) is placed in a region where gradients
in the flow variables are expected to exist. A quadratic extrapola-
b o)
tion can be used on this boundary that lets f/:ix and 7{/.x7 be
nonzerw, thus satisfving this gradient condition. Assuming a constant
srid spacing “x near this boundary, Taylor series expansions can be
perforrmed in the following manner from a point (1L, j) on the bhoundary

te the following three points interior to the boundaryv:
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i -t A N, S o’ Ly ey
1L-1,j L,y N s,y T o, SN SN E
dX d%
. 2. 3
af 2oaTf I 57f
=7 2rx - + o2t + 0 .
fricayy T Trn,y A g S O RX3‘IL,J) (4-14)
o) it 3 |
o 9rx” T 3501
= 3y - 4oL + 0Cx” 4-15
fios,y = B,y 30 axle,j R CCex ay3)!1L,J> (4-15)

If the assumption is made that the last term in each equation can

1

be neglected, i.e.

(4-16)

then equations (4-13) through (4-15) can be solved simultaneously to
give the following expression for the boundary point (IL, j) in terms
the

of interior points:

f . =31 -3f + f (4-17)

TL-1,] 1L-2,j 1L-3,]

This condition works well as long as large pressure gradients
dn not exist at this boundary, as in the case when a normal shock wave
exits the boundary. If this does occur, the term involving FBf/Jx3
is no longer negplegible. Fquation (4-17) then can become numerically
unstable.

Yumerical divergence did occur when the previous extrapolation
condition was applied to regions of subsonic flow present at this out-
flow boundary. Therefore, the following first order, zero pradient
condition was applied at points (IL, j) when the Mach number at points

(1L-1, j) vas found to be subsonic:

= L-18
P,y 7 B, g (4-18)

4.4

THE CELTERLINE

The centerline boundary (AF in Fipure 6) is a line of svmmetry




with no mass or energy flux across it. The vertical velocity component
condition (eqn 2-36) is applied by setting:
vi,l =0 for I - i - IL (4-19)
The svmmetry conditions for the density and u component of velocity
(eqns 2-37 and 2-38) which are valid only at the centerline are applied
in the following manner. Taylor series expansions are performed for
and u from a centerline boundary point (i,1) to points (i,2) and
(i,3) which are distances A; and Klr, respectively, above the center-

line boundary. The series expansions to these points give the following

equations for density:

N + Ir ;?}, + -

e
' = A . 4=2
i,2 i,1 Ti T2 31,1 (4-20a)
ar ar
(2?2 ;3
il oY o SRS
= + R —, - L4 + O(sr” £ 4=20
R UE TP US B LT U B ,‘rQEl,l Clor e i1 (4-20b)

If the centerline svmmetry condition (2-37) is applied and the
higher order term in each equation is neglected, these two equations

can be solved simultaneously to obtain:

}\.? [ DL
S s 1,0 (4~21a)
. (K" - 1)
A similar expression can be obtained for the u component of velocity:
2
™ u - u
.o .
Ut L2 5,3 (4=21b)
’ (K - 1)

The previous ewxtrapolation boundary conditions for the densitv and
the horizontal velocity component were applied only to regions of super-
sonic flow at the centerline. Undesireable pressure wig:rles occurred if
these conditions were applied to regions of subsonic flow. The following

first order zero gradient condition was applied at the centerline points
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(i,1) when the Mach number at points (i,2) was found to be subsonic

= ¢, (4-22a)
(4-22b)

Since the v component of velocity is zero on the centerline,
this boundary can be considered as a streamline. As discussed in
chapter 2, the stagnation enthalpy is then constant on this boundary.
Since the total enthalpy at the inflow boundary is known, then

= | < 1 LoD
0li,1 Ho!l,l for 1 i < IL (4-23)

Since the value of vy has been previously determined by equation
(4-22), the definition of the stagnation enthalpy can be expanded to

determine the value of temperature at each boundary point (i,1):

2 2 Y
T, =T + [(Ul,l) - (Ui,l) ]/ZCp (4-24)

The values of the primitive variables ;, u, v, and T have now
been determined for each centerline boundary point, so that the re-
quired values of the conservative variables can be computed along

this boundary.

4.5 THE NOZZLE WALLS

The nozzle walls (BG, GH, and CH in Figure 6) are treated as
no-slip, impermeable boundaries. The no-slip condition is imposed
on the three wall faces by imposing the following conditions (see
Figure 17):

Inner wall

= = B 1 < A\l /—'_” i
Yiogwr C Vi D O fer 1o i oIk (4-25a)




Outer wall:

= = < i J -
Ui,JWO 0 for 1 i < IW (4-25b)

Vi, Jwo
Base (vertical) wall:

= - 1 s 7 -
UIW,j vIW,j 0 for JWI <« j < JWO (4-25c¢)

As discussed in chapter 2, a constant wall temperature is im-
posed on the nozzle walls. This condition is applied simply as:

Ti,JWI = Ti,JWO = Tw for 1 < i < IW _ (4-26a)
and

Ty, = Ty for WL < j < Jwo (4-26b)

A first order pressure gradient condition derived from equa-

tion (2~42) is applied on each wall. This is imposed as:

Pigwr = Pi,gyp-p fort i < IW (4-27a)
Pi qwo = Pi,gwoep fOT 1 1 <IW (4-27b)
Plw,s ~ Prusr,j o7 WD = J  JWO (4-27¢)

)

Since the points (Iw, JWI) and (IW, JWO) are positioned at

sharp corner poi~tw, the simple pressure condition applied in
equation (4-27) is 1 - applicable. An averaging scheme was there-
fore used to allow the 1:. nre to adjust at the corners. This

averaying is applied as:
= (P + 7 V/2 4-2
Prvovt = e, wiaa Cael, awn! (4-28a)

and

P = (p + P

y I L=
Ik, "o 1w, Juo+] Iw+l, Juo'’ = (4-28b)

The primitive variables u, v, P, and T have now been defined
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on the wall boundaries. Ghe required values of the conservative

variables can then be computed on this boundary.

4.6 INITIAL CONDITIONS

As discussed in chapter 2, initial values of the conservative
variables must be imposed over the computational domain. Since the
incoming flow variables are fixed in time, they are initiallv imposed

over the complete computational domain as follows:

.= U8 ., 3 < JWI and JWO < j (4-24G)
1,3 1,i" 9 - -
The value of the u component of velocity in the wake region (JWI - j

< JWG) would be zero from the input profile. Therefore, the u con-
ponent in the wake is set to grow exponentially using the following

equation:

ul o= k(1 - A T Xi,j)/yB]) (4-30)
where
1,57 T1uwio1)
k, = u? - + (u® - u® ) =2 - (4-31)
o T TWI- .
1, 101-1 1,Jwo+1 1,JwI-1 (rl,JHO+1 rl,\wl—l)
for IWw - 1 < IL and JWI < j < JWO. Use of this scheme allows the

velocity in the far wake to be close to that of the two streams, thus

accelerating convergence.

Unce an initial case of the coflowing nozzle had numerically
converged to a valid solution, each succeeding case was ' initialized
by imposing a new jet input profile on the inflow boundary of the
preceding converged solution. This technique allowed the new solu-
tion to converge at a much greater rate, since the subsonic recircu-
lation zone in‘the near wake was already in existence from the previous

svlution.
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CHAPTER V

TURBULENCE MODELING

The experimental tests used as a basis for the computational
solutions were conducted at a Reynolds number of 2.2 x 106, based
on the ogive body length and the external flow conditions. The
external flow in the region of the nozzle is thus expected to be of
a fully turbulent nature. éeynolds numbers in the interior jet flow
covered a range from 1 x 105 to 1.7 x 106, based on nozzle exit con-
ditions and the nozzle throat to exit plane length. Considering the
effects of compressiblity and the existence of a favorable preséure
gradient in the divergent portion of the nozzle, a transition Reynolds
number of 5 x 105 was used to determine the condition at which the
jet flow possessed turbulent characteristics (27).

The turbulent nature characteristic of these flows can be accounted
for in the computational solution by a variety of eddy viscosity models

ranging from locally dependent algebraic models to the more complex

higher-order closure models such as the turbulent kinetic energy methods.

Although the higher order methods can account for the time history of
the turbulence in a flow, they require that accurate initial profiles

of the turbulent shear stress be known or reliably calculated (28)

1¢{ this initial profile condition cannot be satisfied, then this type of
prediction method cannot be effectively utilized. Since this proved to
be the case for the jet problem under consideration, locally dependent
eddy viscosity‘models were carefully applied over the computational

domain.
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As shown in Figure 18, the computational domain contains three
distinct regions in which various eddy viscosity models are applied.
These regions consist of an area containing boundary layers, a far wake
region downstream of the nozzle exit, and a near wake region close to

the nozzle exit plane.

5.1 BOUNDARY LAYER MODEL

In the first region, the dominating flow features are the boundary
lavers along the nozzle walls. Since the experimental boundary layer
thicknesses are at least an order of magnitude smaller than the nozzle
radius, a two-dimensional turbulence model was judged to be sufficient
for the axisymmetric cases. The eddy viscosity model applied in this
region is a two layer Cebeci-Smith model (29). The inner laver of
this model accounts primarily for the laminar sublayer adjacent to
the wall, with the outer layer accounting for the remainder of the
boundary layer region.

The expression for the inner model is based on Prandtl's mixing-

length theory, which can be written as:

Q;
c

'l"

(5-1)

(VRN

o
~
3

where u, is the local tangential velocity parallel to the wall surface,
and r is the normal distance measured from the wall., The mixing length
in this model is adapted from Van Driest's sublayer model, and is ex-

precsed as:

2
=04 (I-e 2bu (5-2)
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This inner model assumes the flat plate pressure condition (dp/dx =
0), but could be modified to account for a pressure gradient in the
direction parallel to the wall within the sublaver.

The outer region eddy viscosity model consists of a (lauser-tyvpe
displacement thickness model defined by the equation:

0168 *

o = 0.01 ; Sy H-3

o 0 U \l (5-13)
wvhere u, is the appropriate tangential velocity at the boundarv-layer
edge and

. & u,

&= JQa - dr (5~4)

p u n

e

is the incompressihle displacement thickness. This model also includes
Klebanoff's intermittency factor ~

1
= {1+ 5.5, (y/€)6]—1 (5-5)

defined by the following equation:-

The inner and outer regions of each boundary laver are defined by
the requirement that the eddy viscosity remain continuous across the
entire laver. This is accomplished by applying the inner model outward
from the wall until £, % fo at a value .- The outer model is then applied
from r. outward across the remainder of the flowfie. + the boundary
laver region. Figure 19 shows a tvpical eddy ~ (.sit. rofile across

this region.

5.2 FAR WAKE MODEL

Ir the region downstrear of the nozzle exit, the initial boundary
lavers on the nozzle walls merge to form a shear layer containing an
imbedded wake region. This region in the flowfield can be further
divided into t@o separate areas: the near wake region close to the
nozzle exit that contains flow features such as the corner expansions,

a "'deadwater' zone, recompression shocks, and the far wake region further
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downstream where the flow eventually tends to a similar free shear layver
tvpe of flow. The eddy viscosity model for the far wake region will be
discussed in this section, and then be extended for the near wake region
in the next section.

The eddy viscosity in the far wake region is in the form of the

following Prandtl mixing length model:

20
¢ o= pof fu (5-6)
where . is defined as the vorticity
.- id “u av .~
“w T VR U= = = (5-7)
or ox

and the mixing length ¢ uses the same formulation as that of Dash, et al
(30,31) in their wake mixing length model for the core region of a co-
flowing nozzle:

L= 0.065 éw (5-8)
In this model, éw is the representative thickness of the shear laver at
any axial position in the wake. This model accounts for the variation
in eddy viscosity across the mixing layer through its dependence on the
local value of vorticityv. As in the eddy viscosity model utilized by
Bualdwin and Lomax (32), the vorticity profile across the mixing laver
can be utilized to determine the thickness parameter 6w. This eliminates
the somewhat complicated process of finding the outer edges of the shear
laver based on velocity profiles for each axial position in the computa-
tional flowfield.

For the axisvametric coflowing nozzle cases that were solved nuneri-
cally, the maximun absolute value of vorticity in the wake was found to
be in the following range:

5 |

P x 10 - o e 1w 10" see! (5-9)
max
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The cutoff value used to define a representative edge of the mixing
laver was:

‘”odgei =1 x 10 sec? (5-10)
This value gave a reasonable value of éw as shown by a typical vorticity
profile in Figure 20. The absolute value of vorticity typically dropped
to less than one percent of [wmaxi within one gridpoint outside of the
cutoff point.

A flat plate validation case was computed using the far wake model
to check its accuracy in a known turbulent flowfield. The data of
Tovoda and Mirivama (33) for a flat plate in turbulent flow at a Mach
nuriber of 1.6 was used as the basis for a computational solution. The
velocity defect in the wake obtained both experimentallv and numerically
is shown in Figure 21. As shown by this figure, the results generated

by the numerical turbulence model compared very well with the thin flat

plate data. Further details of this computation are listed in Appendix

5.7 NEAR_WAKE MODEL

The accuracy of a Prandtl type mixing length turbulence model is
substantially dependent on the use of length scales that are truly re-
presentative of the flow in a given region. In the far wake region
where a single mixing laver exists, the previous definition of the length
scale involving ;w is valid. However, for the case of a coflowing nozzle
with a thick basce annulus, several length scales need to be defined in
the near wake region. As shown in Figure 22, the existence of the sub-
sonic, recirculating "dead water'” region adjacent to the nozzle base
wiall complicates the flow simulation. In the near wake, the length

scales must transition from the appropriate boundary laver thickness

H1
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at the nozzle exit plane to the single mixing layer thickness (fw) that
exists in the {ar wake region.

This transition is accomplished using the following procedurc. The
ernterier edyes of the mixing layvers in the near wake are determined using
the vorticity limits previously defined for the far wake. The interior
edves of the dual shear lavers are then defined by the Mach 0.5 contour
line surrounding the "dead water" region as shown in Figure 22. The
vorticity turbulence model aefined by equations 5-6 and 5-% is then applied
in the near wake region from the end of the bhoundary layer zone to the start

of the initial mixing zone with

EO in the free stream flow

! ;i in the jet stream flow

0.5 (éo + {i) inside the Mach 0.5 contour of the 'dead water

region

A

An initial mixing zone, one base height in length, is used to smoothly
adjust the thickness of the dual shear layers (r?0 and ’i) that exist in
the expansion and recompression zones of the near wake region to that of
the single shear laver (iw) in existence further downstream. The follow-
ing exponential eguation is applied in this region:

, ‘ _k]
i(x)y = & - (& -4 ) e (5-11)

wihx wix ‘o or jlx,
o i
where k] is determined by the expression

- 0.9) (5-12)
»

and the valuce of x lies in the following range:

o= 0.5y v ox oo x4+ 0,5y
o . B ] B

The point is centered in the mixzing region. 1t was determined that

the position of the midpoint x must be specified. 11 allowed to tloat,
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the near wake eddy viscosity region stretched to unrealistic lengths

and gave erroneous values of nozzle base pressure. Using the very
sliphtly underexpanded experimental case (Pj/Pm = 1.03) as a basis,

the midpoint X was varied to obtain its effect on nozzle base pressure.

As shown in Figure 23, the value

gave the best egreement with the experimental data. This value was
then fixed for the entire series of flow calculations at the various
pressure ratios.

A two-dimensional wedge-flat plate validation case was computed in
order to obtain the accuracy of the turbulence model in the near wake
and transition zone to the far wake. The data of Rom, Seginer, and
Kronzon (34, 35) for a one centimeter thick wedge-flat plate in turbulent
flow at a mach number of 2.25 was used as the basis for a computational
solution.

All of the near wake features were accurately reproduced by the
cormpuational solution, and are discussed in Appendix D. Both the static
prescure axiallyv along the line of symmetry and the pitot pressure p.o-
files in the near wake are in good agreement with the experimental data.
The variation in the mixing length (&) used in the turbulence model is
shown in Figure 24. This figure exhibits the correct physical behavior
of the growth of ¢ as the flow expands around the corner and the subse-
quent decrease in ¢ as the flow recompresses in the near wake rezion. The
exponential growth in the transition region is also evident. This case
confirrs that the eddy viscosity model used in the coflowing nozzle is a
reasonable one that should account for the turbulence effects in a correct

manner.
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CHAPTER VI

This chapter will discuss the numerical results of the computa-
tional solutions using the algorithm, boundary conditions, and
turbulence modeling detailed in previous chapters. The first section
of this chapter will duscuss the experimental cases taken as the basis
for comparison with the numerical solutions for the coflowing nozzle.
The next section discusses details involved in the actual computa-
tional procedure. The last section covers the comparison hetween the
experimental and computational soluticons, including some analvses
of the accuracy of the simulations and discrepancies between the

numerical solutions and the experimental data.

6.1 Experimental Data Base

As outlined in Chapter 1, the data of Bromm and O'hDonnell (16)
is used as the experimental basis for this research effort. Super-
sonic fields of flow generated experimentally contain both highly
viscous flow regions as well as shock structures ranging from weak
regularly reflected shock waves to the strong Mach disc shock forma-
tion. Five different experimental nozzle pressure ratio conditions
are used as the basis for the computational solutions. XNozzle base
pressure measurements and schlieren photographs are the basis for

experimental versus computational comparisons.

The madel, a stainless steel bhody of revolution, consisted of
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a 16.25 inch ogive forebody and a one inch diameter cylindrical
afterbody (see Figure 15). 7The total length of the model was 7.5
inches. The model was supported by a 107 thick hollow side strut

that acted as a conduit for the air flow to the jet as shown in

Figure 5. The effects of this strut were found to be negligible

on the flow field downstream. This model was fitted with a nozzle
which gave essentially isentropic flow with an exit Mach number of
3.00. The inner diameter of this nozzle at the exit plane was 0.742
inches, and the length from the nozzle throat to the exit plane was
1.20 inches. Four base pressure orifices were used to obtain the base

pressure measurements as shown on Figure 5.

External Flow

The external flow conditions were generated in the NASA Langley
9-inch supersonic wind tunnel. The free stream Mach number was set
at 1.94, and the free stream Reynolds number was fixed at 2.2 x lO6
based on the body length of the model. A turbulent boundary layer
on the model at these conditions was insured through the use of a
transition strip near the nose. The tests were conducted at a
tunnel stagnation pressure of one atmosphere (assumed to be 2116 psf).
Using these given conditions, the stagnation temperature of the free

strear was calculated to be equal to 580.5°R.

The flow just upstream of the jet exit plane was giver to be
at a Mach 3, zero divergence angle condition. The total pressure

in the jet flow was varied to obtain the desired nozzle static pressure
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ratio. The jet static pressure at the nozzle exit plane was not

measured directly, but was calculated using the given nozzle area
ratio and the jet total pressure. A total temperature in the jet
flow was not given experimentally, but was assumed to be equal to

the freestream stagnation temperature (580.5°R).

6.2 Computational Petails

Solutions were computed for the coflowing nozzle at the follow-
ing five nozzle static pressure ratios: Pj/Pw‘= 0.150, 0.251, 0.527,
1.03 and 1.59. These solutions were all performed on a CDC Cvber 175
digital computer located at Wright-Patterson AFB, Ohio. The average
rate of data processing was 0.0015 second per grid point per iterative
time increment. In this section further details of these computations

will be discussed.

Grid Parameters

Important parameters of the computational grid including the
number of grid points and axis length utilized in both the axial
and radial directions are listed in Table 1 for each nozzle pressure
ratio condition. The value of the axial field length includes a
lergth increment of 0.4 upstream of the nozzle exit plane, with the
exit plane at a value of x/r,et = 0.0. A compact 45 x 45 point grid
was used in the two most highly overexpanded cases (PJ./Poo = 0,150,
0.251). Twelve additional grid points were then added in the axial
direction downstream of the original grid to form a 57 x 45 grid for

the next case where Pj/Pn’= 0.527 (Figure 25). This methodologv gave

a consistent cell length in the axial direction for each of these
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three cases in which both a regular shock reflection (Pj/Pm = 0.527)
and Mach discs (Pj/Pm = 0.251, 0.150) should occur. The computational
domain was then stretched using the 57 x 45 point grid to the degree
necessary to cover the phenomena of interest for the two underexpanded
cases.

Minimum grid spacing in both the axial and radial directions
occured adjacent to the nozzle walls, and was set at:

nx/r, = tr/T, = 0.030
jet jet

The patched exponential stretching outlined in chapter 3 was then
applied to form each grid initially for the various cases. The adap-
tive grid procedure was applied in the radial direction during the
solution procedure as discussed in Chapter 3 and Appendix B to obtain
the final grid geometry for each case,.

Table 1. Computational Grid Parameters

Ij_‘./‘}j_“,-,“ﬁ_iL. n LT/ r o, YLT/T,
0.150 45 45 3.4 3.0
0.251 45 45 3.4 3.0
0.527 57 45 4.t 3.0
1.03 57 45 6.4 3.0
1.59 57 45 8.4 .0

Coarse CEéﬁmﬁfiESEiJHLJ¥BHUEUI_L“Ver Resolution

The numerical solution of the Yavier-Stokes equations can in-
volve significant truncation errors in regions containing high velocity
gradients such as within turbulent boundarv layers when relatively

course computarional grids are emplo.ed. FErrors in computed velocity

gradients invel ¢d in shear force terme at the wall can result in erron-
eous values of the pressure gradient along the wall. The extent of
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these errors can be realized by assumrming the existence of a tur-
bulent boundarv laver possessing a velocity profile in the following
form (36):

+ + +

u o=y 0 - v <11 (H.1a)

+ + + +

= 2.5 W + 5 D < : e . [
u 2.50 In(v ) 5.10 11 . Y opL cdge (A.1b)
where

+ —_— + S

u o= wi/t and v =~ U
w . w

K

Since the dominant term in the shear stress is the eradient i%y
a comparison of the value obtained using this profile can be made
with that obtained using the numerical algorithm. MacCormack's algorithm
computes this gradient using a first order finite difference in the
direction of the sweep for the predictor step. At the wall this grad-

ient is computed as:

L = . 5
fv&w Ui,jw+l/h}w (6.2)

where jw+l is the first grid point above the wall, and Ayw is the
grid spacine adjacent to the wall. T{ a nominal Reynolds number of

f
110 based on bod length is applied to the previous turbulent velocity
profile, the ratio of actual wall velocity gradient given by the pre-~
vious profile to that computed using equation 6-2 can be displaved as
a function of the ratio of u velocity component at the first point
above the wall to the freestream velocity as shown in Figure 26. FYor
wrid spacing substantially greater than the sublaver (u]/ue = 0,475,
excessive error in the computed velocity gradient occurs. Since in the
coflowing jet solutions the previously stated minimum grid spacing
gives values of (ul/uc)‘u = (.72 and (u]/uv)l}ut = 0.90, a correction

is needed. This is accomplished by applving the value of ('f given by a
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a boundarw laver analvsis at the inflow boundary along the nozzle wall
when j = jw, instead of using the standard differencing procedure in
the alyorithm.  This procedure has resulted in smooth pressure profiles
near the inflow houndary instead of slight pressure jumps previously
ohserved in course mesh cases. This concept is analogous to the wall

functions described by lLaunder and Spaulding (37) and employed by

Peery and Forester (38).

External Tlow Parameters
Values for the external flow variables were Input numericallw

hy applying the experimental values of M _, PO ,» T, and tne bouncary
o 0w

2

laver preofiles gencrated for use on the inflow boundary. A valuce for
thie turbulent skin friction coefficient of Cf = 0.002&% was obtained
from the boundary laver input profiles and was applied on the ex-
ternal nozzle wall as discussed in the last section. A wall temper-
ature of 551°R was calculated using the analysis in Appendix A.

The wall temperature was given a constant value for all five cases

since the nnalvsis showed that this temperature should not vary mere

thar one devrree over the range of simulated {low conditions.

Jet Tlow Parameters
The mumerical jet field of flow was determind by applving the
evperimental values of the jetr Yach number and total temperature
civen in the previous section along with the values of tie jot total
pressure and skin friction covftficient listed in Tabhle 2. Since the
nozzle will temperature was considered ta be constant, the value

for the internal nozzle wall was also set at 551 R, As shown i the

tatle, the state of the jet boundary laver in all et the coses ¢x-

cept the Towest nezzle pressure ratio condition (/D = 06,1500
IR
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was considered to be turbulent at the nozzle exit plane. Since the
case where Pj/Pﬂ = (1.251 possessed a Revnolds number below the pre-
viously set transition point, a w-lution using a laminar jet boundary
laver was also obtained. At this pressure condition, both the laminar
and turbulent jet boundary lavers gave nearly identical values for the
nozzle tase pressure and pormal shock position. However, the laminar
case exhibited a mild shear laver oscillation for the duration of

t .¢ solution procedure. Tor this reason the results of the turbulent
case are presented. It is interesting to note that no mixing layer

oscillations were ohserved in the other laminar jet condition (P /P =
i

OL150) .
Table 2. Computational et Flow Parameters
-5 3
Pj/P p (psf) Re .x10 Bound. laver Cf x 10
. o ] -

Character

0,150 1636, 1.61 lLaminar 1.60
4.251 27735, 2.70 Turbulent 3.39
ron27 5747 . 5.67 Turbulent 2.8
1.ran Trrsa. 11.08 Turbulent 2.50
1.0 177340, 17.11 Turbulent 2.130

Poundary Condition Application

The specific nurerice’ boundary conditions given in chapter
four were appiied te i corputational dorain in order to achieve
svlutions for the cotlewing noczle. No osigniticant problems were
encountersed with the application of the upstrean boundarics, the npper

bovusdary, or the nozele waill boundarics. Pifficultice wore ene vmtered

with hosh the donwstrear boundary and the centerline hoodirs when o




AD=A100 817 AIR FORCE INST OF TECN WRISNT-PATTERSON AF8 OM SCMOO==ETC F/6 20/4 -
NAVIER-STOKES SOLUTIONS FOR A SUPERSONIC COFLOWING AXISYMETRIC -—gTC L)

APR 81 @ A HASEN
UNCLASSIFIED AFIT/DS/AA/83=2 N
oo 2




significant portion of the flow along each boundary was subsonic in
nature. This condition only occurred for the highly overexpanded
case (PJ./Pm = 0.150), where a substantial embedded subsonic region
exists downstream of the Mach disc shock structure.

The quadratic extrapolation given by equation 4-17 produced very
reasonable results for those cases where the outflow was either entirely
supersonic, or only subsonic at a very few points in the nozzle wake.
For the case where a substantial area of subsonic flow existed behind
a Mach disc structure and extended to the donwstream boundary, num-
erical divergence occurred when equation 4-17 was applied. A second
order zero gradient condition was then applied in regions of subsonic
flow along this boundary. Application of this condition did not
produce numerical divergence, but did give unrealistic pressure jumps
at this boundary. A first order zero gradient condition given in
equation 4-18 was then successfully applied to subsonic regions on
this boundary with reasonable results.

An almost identical situation occurred aleng the centerline
boundary for subsonic regions containing fairly strong radial flow
gradients close to the centerline. Both the extrapolation condi-
tion given by equation 4-21 and a second order zero gradient
condition produced unrealistic radial oscillations in the numerical
solution (called "'wiggles'") within these regions of subsonic flow.
The application of a first order zero gradient condition given by
equation 4-22 helped reduce these oscillations to achieve a reason-
able solution.

Two solutions were also computed where first the downstream
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boundary, and subsequently, the upper boundary were repositioned
greater distances from the nozzle as discussed in Appendix E. No
changes were detected in either the shock structure or the nozzle

base pressure coefficient. These test cases validate the effectiveness
of these boundary conditions at the positions utilized in the actual |

nozzle solutions.

Convergence

As stated in chapter 3, the numerical solutions were either

initiaily started using only the boundary layer profiles across the

computational domain, or restarted from a previous solution by apply-
ing new input profiles at the jet inflow boundary. Solution times
based upon the convergence criteria discussed in chapter three varied
significantly for the two methods of initial startup. Solution times
on the Cyber 175 using only the boundary layer profiles to form the
initial conditions were approximately 3.0 hours for the 45 x 45 point
mesh and 3.8 hours for the 57 x 45 point mesh. Solution times for
cases restarted from previous solutions were approximately 1.7 hours
for the 45 x 45 mesh and 2.1 hours for the 57 x 45 mesh. The large
difference in these solution times is mainly attributed to the length

of time required for the subsonic recirculation region in the near

wake to form and achieve a steady state condition.

6.3 Comparison with Experimental Data

Comparisons between the numerical solutions and the experimental
data can be made both qualitatively and quantitatively. Figures 27

through 31 give a good visual comparison between the numerical solutions
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depicted as Mach number contours and the experimental schlieren
photographs. In these figures the computed solutions above the
centerline were reflected to give a total nozzle flowfield to compare
with the schlieren photographs. Ali features typical of afterbody
types of flows such as the shock structure internal to the jet core
flow, external recompression shocks, and shear layer development are
readily discernible and in very good agreement with the experimental
data.

As shown by the previous figures, the pressure condition at which
the jet flow shock structure transitions from a regular reflection on
the centerline to the Mach disc formation lies between the two cases
where Pj/Pw = 0.527 and Pj/Poo = 0.251. Although the shock structure
near the centerline appears similar in the computational solutions
for these two cases, an enlargement of this region as shown in Figure
32 reveals several differences. The shock strength (related to the
Mach number jump across the shock) is much greater in both of the strong
Mach disc cases (PJ./Poo = 0.150 and 0.251) than in the regularly re-
flected case (Pj/P°° = 0.527). The sonic lines in this region are
displayed as dashed lines in Figure 32 in order to easily identify
regions of subsonic flow. Both Mach disc cases contain areas of sub-
sonic flow downstream of the shock along the centerline, whereas the
minimum Mach number behind the regularly reflected shock is approxi-
mately equal to 1.65.

A check was made on the solution to the highly overexpanded case

(Pj/Pw = 0.150) to determine if the numerical solution correctly

simulated the flow conditions across the strong normal shock in the \
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Figure 32. Computed Mach Number Contours in the Region
Near the Shock Reflection at the Centerline.
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region near the centerline. Since the v velocity components are

very small near the centerline, a one-dimensional analysis based

on the Rankine-Hugoniot relations across normal shocks can be applied.
As shown in Table 3, the computational solution was within 2% of

the exact one-dimensional analysis.

Table 3. Comparison Between a 1-D Analysis and the Computational
$olution Across the Mach Disc for Pj/Pm = 0.150.

N
Mi M, PZ/Pj oz/oj T2/Tj
Exact (1-D) 3.00 475 10.33 3.857 2.679
Computational 3.00 442 10.52 3.906 2.695
% Error - 1.1 1.8 1.3 0.6

Several other phenomena associated with afterbody flows are
evident in Figure 33, which displays computed velocity profiles
at given axial stations for the large llach disc case. The separated
""deadwater zone' of recirculating flow is readily apparent in the
near wake region, as is the development of the near wake to a far
wake velocity profile. The existence of the strong Mach disc near
the centerline is very evident, and the flow in the subsonic core
region behind the shock accelerates in the correct manner to a slight-
ly supersonic condition at the outflow boundary.

A closer look at the near wake region is shown in Figure 34 for
two of the computational cases. This figure illustrates the change
in the shape of the '"deadwater region' from a predominantly symmetric
nature at Pj/Pm = 1.03 to one with an asymmetric nature at Pj/Pw =
0.150. 1In this figure the dashed lines denote the dividing stream-

line and the streamlines through the stagnation point in the near

wake flow for each case. As shown in Figure 35, the dividing streamline
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moves toward the inner wall of the nozzle as the total pressure in
the jet is decreased. Although the stagnation point in the near wake
region moves radially as the jet stagnation pressure 1s changed, it

remains in a relatively constant position axially for the cases com-

puted.

Quantitative comparisons between the experimental data and the
computed solutions are based primarily on two parameters: the axial
distance along the centerline from the nozzle exit plane to the point
of reflection of the incident shock wave at the line of symmetry,
and the value of the nozzle base pressure coefficient. This reflec-
tion length, along with the type of shock reflection (either strong
or weak), is a good indication that the inviscid flow features in
the jet core caused by viscous~inviscid interaction are properly
simulated. These computed shock reflection lengths are obtained
by examining the axial variation in Mach number along the centerline
as shown in Figure 38 for a typical case. As shown in this figure,
the shock reflection is diffused over three cell lengths, with the
computational value of the reflection length taken as being at the
midpoint of these three cells. Comparisons between the experimental
and computational values of these reflection lengths are shown in
Figure 37 and Table 4. Excellent agreement was obtained, with the
computational results being within 27 of the experimental data.

An additional quantitative comparison was also made of the
computed and observed Mach disc radii for the two gases at which
the Mach disc was observed. This comparison is listed in Table 5.

The computed Mach radius was taken as the radial height of the
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i‘ sonic line immediately behind the strong shock wave. Very good
agreement was obtained for the highly overexpanded case (Pj/Pm =
0.150) in which a fairly large Mach disc occurs. Poorer agreement
was obtained for the case that was much nearer to transition to a
regular shock reflection, with a very small Mach disc radius (rm/rjet =
0.17). The first cell height adjacent to the centerline in the
computational solution possessed a value of r/rjet = 0.06, so that

numerical truncation error played a large part in the discrepancy

in Mach stem radius at this particular condition.

Table 4. Comparison of Shock Reflection Lengths

Pj/P°° xE7$eri?i8tgé) go7iuta§igngi) % Error
r jet— r' jet—"°

0.150 1.19 1.17 -0.3

0.251 1.88 1.91 +0.5

0.527 2.98 2.91 ~-1.2

1.030 4,37 4.26 -1.9

1.590 5.64 5.53 -2.0

Table 5. Comparison of Mach Disc Radii

PJ./Pco Experimental Computational % Error
rm/rjet(ip.OS) rm/rjet(i0.0A)
0.150 0.45 0.44 =2.2
0.251 0.17 0.06 =24,
.
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Table 6. Comparison of Base Pressure Coefficients

P /P Experimental* Computational % Error
1 P (+0.003) 1y ($0.002)
—— B - B _ ———— - — -
0.150 -0.240 -0.310 -25.0
0.251 -0.280 -0.299 - 6.8
0.527 -0.265 -0.276 - 3.9
1.030 -0.237 -0.245 - 2.9
1.590 -0.226 -0.219 + 2.5

*interpolated from existing values

Comparisons between the experimental and computational values
of nozzle base pressure coefficient are shown in Figure 6.14 and
Table 6. Since the experimental data points for the base pressure
coefficients were not obtained at the same pressure ratio values as
the schlieren data, experimental values for the base pressure coeffi-
cients in Table 6 were interpolated from the available data prints
at the five given nozzle pressure ratios. Values of the computed
nozzle base pressure were in good agreement with the experimental
data (3-77 error), with the exception of the highly overexpanded
case at which PJ,/Pco = 0.150. Figure 38 shows that as the pressure
ratio of the nozzle is lowered, the decreasing trend in nozzle base
pressure reverses at a value of approximately Pj/Pw = 0.18 and sharply
increases as the pressure ratio is further reduced. This sudden reversal
in behavior is apparently due to flow separation in the divergent
portion of the nozzle which prevents the jet flow from expanding
fully to its assumed Mach 3.0 state. For pressure ratio values less
than Pj/Pm = (.135, deterioration of the Mach disc formation to a

regular shock reflection occurs as shown in Figure 39. This may
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indicate that for values less than PJ./POo = 0.135, either the jet

Mach number is less than 1.48 and thus cannot support a Mach disc
structure (8), or the increase in nozzle static pressure due to the
reduced expansion cannot produce the deflection angle in the jet flow
needed for a Mach disc to occur. A non-separated condition was
assumed by the experimental investigators, since their value of Pj
was determined using the jet total pressure and the final area ratio
of the nozzle. Likewise, the computational solutions assumed non-
separated Mach 3 flow just upstream of the nozzle exit plane. If some
separation did occur and the nozzle flow did not fully expand to a
Mach 3 condition, a substantial difference in base pressure could
result.

This hypothesis of separation in the nozzle was partially confirm-
ed by computationally solving a case where the jet total pressure
corresponded to the attached case (Pj/Pw = 0.150), but with jet
input profiles corresponding to an isentropic expansion cf the jet
flow to a Mach number of only 2.60 as detailed in Appendix E. A
correct strong shock structure was obtained computationally, and
the value of the base pressure coefficient increased to a value of
-0.265. This was in much better agreement with the experimental
data at this condition. A more accurate simulation of this pressure
ratio condition would require extending the computational mesh back
to the nozzle throat. Separation in the nozzle could then occur in
a direct manner in the numerical solution. Since this would require
extensive grid revisions as well as additional computer resources,

it was considered to be beyond the scope of this investigation.
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CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

A numerical method of obtaining solutions to the Navier-Stokes
equations for supersonic coflowing axisymmetric nozzles has been
developed from a selection of appropriate techniques. Based on the
numerical analysis and computational results obtained through this

study, the following conclusions are drawn:

1. The numerical solution of the Navier-Stokes equations applied to
supersonic coflowing nozzles successfully reproduced all of the
essential flow features including boundary layers, corner expan-
sions, recompression shocks, the recirculation region adjacent
to the nozzle base wall and the evolution of the near wake to a
flow with far wake behavior.

2. The numerical method achieved a correct transition from regularly
reflected shock waves at the line of symmetry in the jet core
flow to a strong Mach disc formation at the appropriate static
pressure ratio condition of the nozzle. The subsonic embedded
region immediately behind the Mach disc formation was simulated

in a correct mdnner.

3. The application of an adaptive grid scheme in the wake region
of the nozzle annulus successfully positioned the fine mesh
region of the computational grid in the wake region which nor-
mally contains severe flow gradients. This allowed the accurate
simulation of this high flow gradient region while conserving

numerical resources.
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The nozzle base pressure was heavily dependent on the eddy
viscosity model applied in the region of the near wake. Once
the model was tuned for the neutrally expanded case (Pj/P°° =
1.03), good agreement was obtained computationally for all cases
where the flow obeyed the assumption of remaining attached in
the divergent portion of the nozzle.

Boundary conditions must be carefully formulated and applied

in order to prevent physically unrealistic results or numerical
divergence of the solution. Both the centerline and downstream
boundaries were sensitive where regions of subsonic flow occured
over a substantial portion of the boundary. Both the quadratic
extrapolation used in regions of supersonic flow and a second order,
zero gradient condition caused either divergence or unrealistic
conditions at the boundary when applied to reginns of subsonic
flow. A first order zero gradient condition was used successfully
in these regions of subsonic flow and found to be superior.
Generalizations about the success of this first order boundary
condition cannot be made, since the degree of success achieved
is dependent on the specific numerical algorithm applied to the
problem.

The final steady state solutions were found to be insensitive to
the initial conditions applied over the computational domain.
However, the time to converge to the final solution was highly
dependent on the application of specific initial conditions. In
particular, the region of subsonic recirculation in the near
wake was the last region in the solution domain to converge.

Solutions started using only the boundary layer profiles across
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the domain required three hours to converge on a Cyber 175 (45 x
45 point mesh), whereas cases started from a previous different
jet total pressure condition but with an established near wake
structure required only 1.7 hours to converge (45 x 45 mesh).

To the author's knowledge, this is the first full Navier-Stokes
solution that has accurately simulated the viscous-inviscid inter-
actions present in a supersonic coflowing nozzle at off-design
conditions where the strong Mach disc shock structure is present.
Mikhail (8) previously was unsuccessful in reproducing the Mach
disc reflection in a full Navier-Stokes solution due to the prob-
bable improper placement of the jet inflow boundary condition,
which did not allow the jet plume to expand to the degree necessary

to generate a Mach disc reflection.

Based on the numerical analysis and results obtained through

this study, the following recommendations are made:

The present scalar computer code developed during the course of
this investigation should be vectorized for use on the new genera-
tion of "supercomputers" such as the CRAY-1 or the Cyber 203.
Although present solution times are on the order of two to four
hours when run on a Cyber 175 computer, a fully vectorized version
of the present computer code can be expected to converge within
five minutes on a CRAY-1 computer (39). This will allow computa-
tion of more complex nozzle geometries and better resolution in
the bounda;y layers through the application of finer mesh, while

holding costs to a reasonable level.

The present numerical solver should be modified to include the
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effects of a calorically imperfect gas with variable specific heat
and thermal conductivity. This modification would allow accurate
simulation of the temperature dependent effects for hot exhaust
nozzles with gas temperatures less than 5000°R (19). Only minor
revisions to the existing computer code would be required in order
to include these temperature effects.

After the implementation of the two previous recommendations,

it would be desirable to incorporate the effects of species mixing
into the numerical solver. Many practical cases of interest involve
a jet exhaust gas with a different species than that of the external
stream. This modification would require a significant code revision,
since the addition of the equation of mass diffusion would be re-
quired, as would the correct modeling of appropriate mass diffusion

coefficients.
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APPENDIX A

NOZZLE WALL TEMPERATURE CALCULATION

The nozzle wall boundary condition applied during the numerical
solution procedure assumes a constant nozzle wall temperature within
the computational domain. The relatively high thermal conductivity of
the stainless steel nozzle makes this assumption valid. This wall
temperature can be calculated by applying a heat flux balance across
the freestream boundary layer, the nozzle wall, and the jet boundary
layer as shown in Figure 40. Conduction of heat in the axial direction
is neglected due to the low temperature gradients in this direction.

Since both the freestream and the jet flow are of a high-velocity

nature, the unit heat flux for either stream can be written as (40):

qw, - hi (Taw, - Tw) (a-1)
i i

where hi is the heat conductance of each flowstream. The adiabatic

wall temperature, Taw , 1s defined by the expression:
i

- no— y=1, 2 -
Tawi Ti(1+ Pr(z)Mi) (A-2)

where n is 1/2 for laminar flow and 1/3 for turbulent flow. Equating

the heat flow out of the control volume for a steady state process gives:

z c';i =0 (A-3)
1

or
2“ r°° C’l + 2 r.?o (.1' =0 (A-4)
® J 3
where j, is either 0 or 1 for two-dimensional or axisymmetric flow,

respectively.
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Applying equation A-1 to the values of the individual heat fluxes and

solving for the wall temperature gives:
Jo
Tow ¥ (ra/rj) (hm/hj)Taw
T = —d—
T /el /)]

o

(A-5)

For flows involving a constant boundary layer edge velocity and a
constant wall temperature, the conductances, hi’ can be defined by the

following analytic expressions:

-1/2 -2/3
= 9 -_
hi 0.332 CP pyouy Rexi Pr (A-6)

for laminar flow, and

51(5 Pr_2/5

h, = 0.0295 C_ . u, R
i P i i Xi

(A-7)

for turbulent flow (40). All of the quantities on the right-hand-side
of equation A-5 are then known, and a value for the wall temperature
can be calculated based on the states of the two flowfields adjacent

to the nozzle wall.
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' APPENDIX B

ADAPTIVE FINITE DIFFERENCE MESH

It is desirable that the fine mesh region of the computational
T grid remain in the areas of relatively high velocity and temperature
gradients as the solution progresses towards convergence. Hirt (71)
has used a technique in the solution of free surface flows that allows
the grid to adapt as the solution progresses. The following kinematic
equation is applied in the region where the nozzle wake and shear laver
develop:

or _ ar _
35 = CAtv ) (B-1)

This equation ensures the condition that as the solution converges,
the physical slope of the constant n finite difference cell boundaries
is the same as that of the velocity vectors near each cell.

Equation (B-1) can be converted to the following finite difference

form for application to a computational mesh:
-
SRR SRS O . N R Qi 5 T L2 5 ) (B-2)
1,3 1,)] A 1,] i!J n n
X, ., = X, .
1,] 1-11.]
where
n n n n n
i = 1/4 + + -
G5 = V4 Gy Yy Y5 T Y e (B-3)
.n n n n n o
= j=4)
Vi T VA0 Vit Ve ge Y e (-4

and where CA ie a constant used to damp the grid motion with respect
to time. Spatial averaging of the velocity components is applied in

order to reduce the effects of numerical velocity fluctuations at indi-
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vidual mesh points in the flow. The upwind difference form of the

cell aspect ratio term (Ar/Ax) is also utilized to achieve better

stability in the finite difference equation.

Equation (B-1) is applied in the wake region of the flowfield
for a line of constant n (j=constant), where the specific value of n
corresponds to the nozzle inner wall for overexpanded flowfields, and

to the nozzle outer wall for underexpanded flowfields. Once the posi-

tion of this grid reference line is established, the fine mesh region

corresponding to the wall thickness in computed. The exponential

stretching scheme discussed in Chapter 111 is then applied for each
value of £ in the regions above and below the fine mesh region as shown

in Figure 41. The first two grid points above the centerline were kept

fixed at constant heights for all values of x. This prevented large

numerical errors in axisymmetric cases involving the differencing of
terms containing (1/r), where r is a very smnall number.

The constant CA was specified in the range of 0.3 - 0.6 in
order to allow the grid to adapt smoothly as the solution converged.
Larger values of CA caused undesirable oscillatory motion of the grid
reference line with respect to time.

The adaptive grid scheme was applied once during every iteration
of the solution algorithm. The number of points allowed to '"float" on
the grid reference line could be varied during the course of the solu-
tion. This capability was utilized primarily during the start-up
portion of the'numerical solution, where only a limited number of points
close to the nozzle were allowed to "float'" until the shear layer was

established. After the position of the shear layer across the complete
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computational domain was completely established, the adaptive grid
scheme could be turned off in order to save computer time during the

remainder of the solution.
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APPENDIX C

TWO-DIMENSIONAL FLAT PLATE FAR WAKE SOLU110:

In order to test the validity of the turbulence model in the
far wake region, a check case possessing known experimental data in
this region was computed. The exjerimental data for this case is
that of Toyoda and Hiriyama (33), which involved a two-dimensional
thin flat plate at a Mach number of 1.60. Tle flat plate possessed
a thickness of 1 mm and a trailing edge thickness of 0.1 mm.

The following flow quantities were given in the experimental

data:
M = 1.60
P, = 3.2 atm
Re = 5300

A value for free stream stagnation temperature was not piven experi-
mentally. A stagnation temperature of 518.7°R was thercfore
assumed. IUsing the previous quantities, the value for the boundarv
laver momentum thickness at the trailing edge was computed us:
‘ = .0895 mnm
TE

The computational solution used the same numerical solver

(MacCormack’s explicit method) as that of the coflowing nozzle o lution..
The eddy viscosity models utilized were identical with those u=ed in
the boundary layer and far wake regions of the coflowing norrle. 7

P

boundary conditions utilized also closely resenble those ot e ot lowin,

nozzle. The inflow conditions were set by the experiviental duta and




remained fixed for the duration of the solution. The upstream u
component of velocity near the trailing edge of the plate was matched
to that of the experimental data as shown in Figure 42, Input con-

ditions at the upstream boundary were then set as:

1/5

ulx;, ¥, t) = 0.6295 u_(y/0p) (c-1)
v(x;, vy, t) = 0.0 (c-2)
T A PTAL I S =S S CTCHN I S VI b RRN (Y
P(Xi‘ v, t) = P (C-4)

e

Buth, the upper and lower freestream boundaries utilize the charact-
eristic condition applied at the upper boundary of the coflowing

nozzle scolutions. The outflow and wall boundaries used conditions
identical to those utilized for the coflowing nozzle. The computational
svaation was initially started by applving the upstream profile across

the corputational domain:

Ciw, o, o) o= ”txl, y, 0) (C-5)
i aliulatieon utilized a 39x34 computational mesh, with ex-
porential test stretohing emploved in both the x and y directions

s stewnodn Pienre 43,0 Minimurm grid spacings in the x and y direc-
tin- were .122mr and 0.100mm, respectivelv. The physical dimensions
of the corjutational flowfield 'n the x and v directions were 38mm

and 21lnr, respectivelv. The rate of data processing on a CDC Cvber
175 computer was .0014 sec per grid point for each iterative time
step. The solution was computed for a duration of four characteristic
times (3200 iterations), at which time no significant chunge was

detected in the dependent variables. The result wuas then taken to
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3 be the asymptotic solution.

The computational solution demonstrated that the eddy viscosity
model gives good results in the far wake region. The maximum velocity
defect generated computationally is in good agreement with the ex- ;
perimental data as shown in Figure 21. Figure 43 shows that the %
velocity fie'd generated computationally evolves from the boundary '
layers on the plate to a classic wake solution very rapidly due to

the turbulent nature of the flow.
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APPENDIX D

TWO-DIMENSIONAL WEDGE-FLAT PLATE NEAR WAKE SOLUTION

In order to test the validity of the turbulence model utilized
in the near wake region of the coflowing nozzle solutions, a check
case exhibiting similar physical characteristics and possessing
known experimental data in this region was solved numerically. The
experimental case selected for this validation study is one obtained
by Rom, Seginer and Kronzon (35) for a two-dimensional wedge-flat
plate in a turbulent supersonic flowfield. The model used for this
study consisted of a sharp 15° half angle wedge-flat plate with a
base height of 10 mm and a chord of 44 mm. The following flow con-

ditions were given in the experimental data:

M= 2.25

Re =1.5«x 106
c

Pooc = 40 psig

T = 492° R
o

A computed adiabatic wall temperature of 466.6° R based on the flow
condition at the flat plate portion of the model was used in the
computational solution.

The numerical solution used the same computational solver and
turbulence model as that of the coflowing nozzle solutions. The
boundary and initial conditions were also identical to those used
in the coflowing nozzle with the exception of the jet centerline
condition. As shown in Figure 45, this condition was replaced with

a4 lower freestream boundary which utilized a characteristic scheme

similar to that of the upper freestream boundary. Since a value for
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the boundary laver thickness near the trailing edge was given experi-
mentally (¢/h = 0.15), a two-dimensional boundary layer code was

used to generate the velocity and temperature profiles on the up-

stream boundary. The boundary layer starting length was adjusted to
give the correct boundary layer thickness. One additional condition
was imposed on the line of symmetry for the wedge (j = 23). At this
line of symmetry, a zero v velocity component was enforced to help
stabilize the wake during the startup of the numerical solution and
help accelerate convergence by damping any numerical shear layer
oscillations in the wake.

The solution was calculated using a 45 x 45 point computational
mesh with exponential stretching employed in both the x and y
directions as shown in Figure 46. The physical dimensions of the
computational flowfield in the x and y directions were 10cm and 7cm,
respectively. Minimum grid spacing in the x and y directions was
set at 0.5 mm. This gave a value of u/ue = 0.83 for the first point
in the boundary layer above the nozzle wall, which corresponds to an
identical value in the jet boundary layer of the coflowing nozzle
solutions. Thus, truncation error should be similar in this region
for both the wedge-flat plate and the coflowing nozzle. The rate
of data processing on a CDC Cyber 175 computer was 0.0014 sec per
grid point for each iterative time step. The solution was allowed
to progress for approximately four characteristic timesteps at which
time the change in the dependent variables was less than 0.5% per
characteristic‘time period. This condition was then considered to

be the converged asymptotic solution.
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Specific features o’ the experimental flowfield in the near
wake were reproduced in the computational solution and can be dis-
tinguished in the plots of Mach number contours and velocity profiles
shown in Figures 47 and 48. Several flow features which were numeri-
cally observed include the existence of thec boundary layers along
the horizontal walle of the body, the turning of the flow through the
corner expansion fans, the existence of the subsonic recirculating
"dead water'" region adjacent to the base of the body, flow recom-
pression through the trailing shocks, and the evolution of the wake
to a classic far wake flow. The weak lip shock evident in the
experimental data was not readily evident in the numerical solution.
This may be attrirtited to the fact that the numerical method tends
to smear shocks, and thus has difficulty locating shocks which are
very weak.

Quantitative accuracy of the numerical solution is identified
through the use of the given experimental static pressure and pitot
pressure data. A comparison of the axial static pressure distribu-
tion along the line of symmetry is shown in Figure 49. The computed
static pressure distribution is within 57 of the measured val.es

5

except in the region of recirculating flow (x < 1.0cm), where there

is up to a 77 discrepancy between the experimental and computed values.

However, static pressure probes like the one used to obtain the data
are very sensitive to flow angularity, and thus less 1cliable in areas
of recirculating flow. A more reliable comparison is that of the

pitot-pressure surveys shown in Figure 50. These measurements are

less susceptible to errors resulting from flow angularity. This
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fipure shows excellent agreement in the 'deadwater” region of
recirculating flow. The numerical solution smears the weak be-
ginniny of the recompression trailing shocks at 0.5cm, but correctly
simulates them at the correct values further downstream (x > 1.0).
This {igure particularly demonstrates that the phenomena present in
the near wake are accurately simulated by the present computational

method and turbulence modeling.
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APPENDIN E

AXISYMETRTC_COFLOWING NOZZLE SOLUTION

SIMULATING INTERNAL SEPARATION OF THE NOZZLE

The peculiar reversal in the nozzle base pressure coefficient
as the pressure ratio was lowered below Pj/Pw = 0.18 was b.lieved to
be caused by separation in the nozzle (Fig. 38). This was further sub-

stantiated through an examination of the schlieren photographs (16)

which show a definite change in flow character near this value (Fig. 39).

To test this hypothesis a numerical solution was computed for a case
where the jet total pressure corresponded to that of the attached strong
shock solution (Pj/Poo = 0.15), but where the jet Mach number equals

2.60 based upon an isentropic expansion in the nozzle. For this jet
Mach number a reduction in nozzle area ratio was assumed from A/A* = 4.2
at Mach 3 to A/A* = 2.9 at Mach 2.60. This reduced expansion rate

was intended to roughly simulate the effects of boundary layer separa-
tion in the nozzle, while retaining grid geometry and fineness identical
to the previously calculated attached jet flow case.

The following jet flow parameters were used in this solution:

M. = 2.60

j

T . = 580.5°R
0]

P,j = 1636 pst

These jet conditions produce an actual nozzle pressure ratio of
Pj/Pm = 0.276 versus the calculated value of Pj/P, = 0.150 which was
assured in Reférence 16.

This solution was initialized using the solution for the attached

strong shock case with a calculated nozzle pressure ratio equal to

i —— w——




0 Pucent tor the upstrean jet boundary, boundary conditions

ard -t contipuration identical to those of the attached case were
urilired. At the upstream jet boundary the following velocity pro-
tile was Tixed:

u = 2002 ft/sec 0 < rfr, < 0.835

. jet —
u =0 .83 < r/r, <1
Jet —
v = 0 < r/r, -1

As shown in Figure 51, this velocity input profile increased
the displacement thickness of the jet boundary layer in rough approxi-
mation to that caused by separation in the nozzle. In this case the
jet flow is assumed to be turbulent in nature.

As shown in Figure 52, a strong shock solution was obtained, with
a reflection length of xs/rjet = 1.29, about 27 greater than the ex-
perimental value at this jet total pressure case. The base pressure
coefficient obtained was equal to -0.264, about 87 less than the
experimental value and in much better agreement than that of the
attached jet boundary layer case.

Although discrepancies in this solution such as the smaller
diameter of the computational Mach disc and the appearance of a
phvsically nonexistant secondary Mach disc further donwstream are
apparent, this case does demonstrate that separation and its effect
on the flow expansion in the nozzle can significantly impact the
resultant base pressure coefficient of the nozzle. Therefore,
future computations for low pressure ratios should commence at the

throat section to insure that nozzle separation is properly considered.
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Figure 52, Comnuted Mach Number Contours for the
Separated Flow Simulation.
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APPENDIX F

INVESTIGATION OF NUMERICAL ERROR

Two error analyses were performed on the numerical technique
used to obtain solutions for the coflowing nozzle. The first con-
sisted of examining the error generated by the numerical algorithm
used to solve the Navier-Stokes equations. The second was a study
of the effcct of repositioning first the downstream boundary, and
subsequently the upper boundary to regions containing onlv minor flow
gradients normal to each boundary. These analyses are discussed in

detail in the following sections.

Truncation Error Analysis

MacCormack’s explicit finite difference algorithm is an equiva-
lent second order accurate numerical solver. The final converged
solut lon for any case computed by this algorithm should then satisfy
the Navier-Stokes equations at all interior node points with second
order accuracy. A numerical check on this accuracy was conducted
using a typical converged solution and the following procedure.

As shown in Chapter 2, the axisymmetric Navier-Stokes equations

can be written as:

Sy B, L) H (F-1)
Jt X r Jr r

A nondimensionalized finite difference formulation of these equations
can then be written as:

MF
[+

rx

LA(TE) _ E
Ar r

+ % ] = F = Error (F-2)
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where U is defined as:

“'c( = (ocuuu (F_B)
L OJUW
+ oueoo
-6 R .
and tc = 5x 10 sec is set to insure that the lead terms on the

left hand side of equation (F-2) are of order one.

The particular check case selected was that containing the
strong Mach disc shock structure (Pj/Pw = 0.150), since this
case contains both substantial regions of subsonic and supersonic
flow, and oblique as well as normal shock waves. The MacCormack
solution for this case was used as input for equation (F-3), where
the left hand side of the equation was computed at all interior
grid points using a standard two-dimensional second order central
differencing scheme applied on the transformed computational plane.
The magnitude of the Error vector (E) is then an indication of how
close Macformack's method is to an alternate second order accurate
solver. The following root mean square (RMS) values of E were

obtained over the interior of the computational domain:

EV 0.026
= E = 0.020
rms [
E 0.011
[SAY)
E 0.026
we ’

This result indicates that over the domain, MacCormack's algorithm
and the two-dimension: .al difference scheme are equivalent to

within three percent.
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Finally, the Error vector E was examined over the computational
domain to determine which regions generated the highest magnitude of
error. Since the RMS error value of the continuity equation was one
of the largest, and the error distribution was representative of that
in the other equations, it is shown in Figure 53. 1In this figure,
only error values greater than the RMS value are shown as contours.
Regions containing the largest error consist of those containing shock
waves and that containing the expansion fan near the sharp corner
of the nozzle. In these shock regions, strong flow gradients exist
over areas with fairly coarse finite difference mesh spacing. Although
the wake region also contains strong gradients within the mixing layer,
it lies within a fine mesh region of the grid that produces much less
numerical error.

This analysis further demonstrates the desirability of utilizing
adaptive mesh schemes that can align the grid with flow gradients

as the solution progresses to convergence.

Boundary Position Analysis

Although the upstream boundary, the centerline boundary, and
the position of the nozzle walls were fixed by the definition of the
problem to be solved, the placement of both the downstream boundary
and the upper boundary was left to the discretion of the computational
investigator. It was desirable to place these boundaries as close to
the nozzle as possible in order to achieve computational efficiency
in a compact d?main. In the coflowing nozzle solutions, both of these
boundaries were located in regions in which flow gradients existed due
to the presence of shock and expansion waves and viscous phenomena such

as shear layers and wakes in the flowfield. The assumption is made that
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positioning these two boundaries in flow gradient regions does not
affect the computational solutions obtained. To validate this
assumption, each of these boundaries was repositioned a greater dis-
tance from the nozzle to regions containing only minor flow gradients
normal to each boundary. The resulting effect on the shock wave
structure as well as on the nozzle base pressure coefficient in the
numerical solution was then observed.

The coflowing nozzle case for which Pj/Pw = 0.251 was exarined for
this particular study. The downstream boundary contains primarily super-
sonic outflow with an embedded wake region of subsonic outflow. The

downstream boundary was extended from its original position at x/rjet = 3.0

to a new value of x/rjet = 6.0. This stretching was achieved by the
addition of twelve grid points axially to the original mesh. The out-
flow at this new position was totally supersonic in nature with only
minor gradients in existence normal to the boundary. As shown in
Figure 54, no changes were evident in the shock structure contained in
the original domain. The computational base pressure coefficient
remained unchanged at a value of Pg = -0.299.

The effect of repositioning the upper boundary to a radial distance

at which flow gradients are not present was then examined. The upper

boundary of the axially stretched case was extended from its original

value of r/r, . = 3.0 to a new value of r/r, = 6.0 as shown in Figure
jet jet

55. 1In this case eight grid points were added radially to the axially

stretched mesh. Again, no changes were evident in the numerical shock

structure, and the computational value of the nozzle base pressure co-

efficient remained at Py = -0.299.
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Since repositioning these boundaries had essentially no
effect on the computational solution that was examined, the applica-
tion of these boundary conditions in the original regions containing
mixed supersonic-subsonic flow on the outflow boundary and substantial

flow gradients on both boundaries was valid.
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